论文标题
接触纳米级稳态的几何形状和量子热力学
Contact geometry and quantum thermodynamics of nanoscale steady states
论文作者
论文摘要
我们开发了一种适合描述某种类别的纳米级系统(其密度矩阵在麦克伦南(McLennan-Zubarev形式)中表达的量子热力学)的几何形式主义。结果表明,非平衡稳态是控制参数空间的点,在某种意义上是由稳态Massieu-Planck函数产生的。通过适当改变系统的边界条件,可以将系统从一个稳定状态带到另一个稳态。我们提供了对这种转变的触点汉密尔顿描述,并表明沿着摩擦张量的大地测量会导致自由熵沿转换的最小增加。控制参数空间被证明配备了天然的riemannian度量,该度量与量子热力学相空间的接触结构兼容,在局部坐标图中表达时,与Schlögl度量相吻合。最后,我们表明该度量与其他热力学Hessian指标有一致的关系,该指标可能会在控制参数空间上写成。这提供了计算Schlögl度量的各种替代方法,该方法已知等同于Fisher Information矩阵。
We develop a geometric formalism suited for describing the quantum thermodynamics of a certain class of nanoscale systems (whose density matrix is expressible in the McLennan--Zubarev form) at any arbitrary non-equilibrium steady state. It is shown that the non-equilibrium steady states are points on control parameter spaces which are in a sense generated by the steady state Massieu--Planck function. By suitably altering the system's boundary conditions, it is possible to take the system from one steady state to another. We provide a contact Hamiltonian description of such transformations and show that moving along the geodesics of the friction tensor results in a minimum increase of the free entropy along the transformation. The control parameter space is shown to be equipped with a natural Riemannian metric that is compatible with the contact structure of the quantum thermodynamic phase space which when expressed in a local coordinate chart, coincides with the Schlögl metric. Finally, we show that this metric is conformally related to other thermodynamic Hessian metrics which might be written on control parameter spaces. This provides various alternate ways of computing the Schlögl metric which is known to be equivalent to the Fisher information matrix.