论文标题
从无法覆盖的姿势中学习对物体的操纵
Learning Pregrasp Manipulation of Objects from Ungraspable Poses
论文作者
论文摘要
在机器人抓握中,通常会以无法覆盖的配置遮住物体,因此找不到prepasp姿势,例如,桌子上只能从侧面抓住的大型平板盒。受到人类的双人操作的启发,例如,一只手抬起东西,另一只手可以掌握,我们通过引入Pregrass操纵(推动和举起动作)来解决这种类型的问题。我们提出了一个无模型的深钢筋学习框架,以训练控制策略,利用机器人的视觉信息和本体感受状态来自主发现强大的预格操作。机器人臂学会了首先将对象推向支撑面,并建立一个枢轴以抬起对象的一侧,从而在对象和表之间创建一个间隙,以便可能握住解决方案。此外,我们还展示了我们提出的学习框架在培训强大的预制定策略中的有效性,这些策略可以通过合适的培训程序,状态和行动空间直接转移到真正的硬件。最后,我们评估了在现实世界实验中学习策略的有效性和概括能力,并证明了对具有各种大小,形状,重量和表面摩擦的物体进行的预格操作。
In robotic grasping, objects are often occluded in ungraspable configurations such that no pregrasp pose can be found, eg large flat boxes on the table that can only be grasped from the side. Inspired by humans' bimanual manipulation, eg one hand to lift up things and the other to grasp, we address this type of problems by introducing pregrasp manipulation - push and lift actions. We propose a model-free Deep Reinforcement Learning framework to train control policies that utilize visual information and proprioceptive states of the robot to autonomously discover robust pregrasp manipulation. The robot arm learns to first push the object towards a support surface and establishes a pivot to lift up one side of the object, thus creating a clearance between the object and the table for possible grasping solutions. Furthermore, we show the effectiveness of our proposed learning framework in training robust pregrasp policies that can directly transfer from simulation to real hardware through suitable design of training procedures, state, and action space. Lastly, we evaluate the effectiveness and the generalisation ability of the learned policies in real-world experiments, and demonstrate pregrasp manipulation of objects with various size, shape, weight, and surface friction.