论文标题
分析移动边缘计算中计算密集型状态更新
Analysis on Computation-Intensive Status Update in Mobile Edge Computing
论文作者
论文摘要
在状态更新方案中,信息的新鲜度是根据信息年龄(AOI)来衡量的,这实质上反映了实时应用程序的及时性,以将状态更新消息传输到遥控器。对于某些应用程序,计算昂贵且耗时的数据处理是不可避免的,以显示要显示消息的状态信息。移动边缘服务器配备了足够的计算资源,并将其放置在用户附近。因此,移动边缘计算(MEC)可能是一项有前途的技术,可以减少计算密集型消息的AOI。在本文中,我们研究了使用MEC计算密集型消息的AOI,并考虑三个计算方案:本地计算,MEC服务器的远程计算以及部分计算,即本地执行计算任务的某些部分,其余部分将在MEC服务器上执行。所有三个方案都采用了零等政策。具体来说,在本地计算中,在计算揭示上一条消息后立即生成新消息。在远程计算和部分计算中,一旦远程MEC服务器收到了上一条消息,就会生成一条新消息。随着无限队列的大小和指数分布的传输时间,对于三种计算方案,得出了指数分布的计算时间的封闭形式的平均AOI。对于确定性计算时间,对平均AOI进行数值分析。仿真结果表明,通过仔细划分计算任务,与本地计算和远程计算相比,部分计算中的平均AOI是最小的。结果还表明,与本地计算相比,远程计算达到较小的平均AOI的条件。
In status update scenarios, the freshness of information is measured in terms of age-of-information (AoI), which essentially reflects the timeliness for real-time applications to transmit status update messages to a remote controller. For some applications, computational expensive and time consuming data processing is inevitable for status information of messages to be displayed. Mobile edge servers are equipped with adequate computation resources and they are placed close to users. Thus, mobile edge computing (MEC) can be a promising technology to reduce AoI for computation-intensive messages. In this paper, we study the AoI for computation-intensive messages with MEC, and consider three computing schemes: local computing, remote computing at the MEC server, and partial computing, i.e., some part of computing tasks are performed locally, and the rest is executed at the MEC server. Zero-wait policy is adopted in all three schemes. Specifically, in local computing, a new message is generated immediately after the previous one is revealed by computing. While in remote computing and partial computing, a new message is generated once the previous one is received by the remote MEC server. With infinite queue size and exponentially distributed transmission time, closed-form average AoI for exponentially distributed computing time is derived for the three computing schemes. For deterministic computing time, the average AoI is analyzed numerically. Simulation results show that by carefully partitioning the computing tasks, the average AoI in partial computing is the smallest compared to local computing and remote computing. The results also indicate numerically the conditions on which remote computing attains smaller average AoI compared with local computing.