论文标题

基于序数观测值的张量降解和完成

Tensor denoising and completion based on ordinal observations

论文作者

Lee, Chanwoo, Wang, Miaoyan

论文摘要

高阶张量经常出现在神经影像,推荐系统,社交网络分析和心理学研究等应用中。我们考虑了可能不完整的序数值观测值的低级张量估计问题。研究了两个相关的问题,一个关于张量DENOISING,另一个在张量完成。我们提出了一个多线性累积链路模型,开发了受cank限制的M估计器,并获得理论准确性保证。我们的平方平方误差限制的速度比以前的结果更快,我们表明所提出的估计器在低级别模型类别下是最佳的。此外,开发的过程是一种有效的完成方法,可以保证仅使用$ \ tilde {\ tilde {\ natercal {o}}(o}}(kd)$ noisy,量化的观察,仅使用$ \ tilde {\ tilde {\ tilde {\ tilde {\ tilde {\ tilde {\ tilde {\ tilde {\ tilde {\ tilde {\ tilde {\ tilde {\ tilde {我们证明了与以前有关聚类和协作过滤任务的方法的表现。

Higher-order tensors arise frequently in applications such as neuroimaging, recommendation system, social network analysis, and psychological studies. We consider the problem of low-rank tensor estimation from possibly incomplete, ordinal-valued observations. Two related problems are studied, one on tensor denoising and the other on tensor completion. We propose a multi-linear cumulative link model, develop a rank-constrained M-estimator, and obtain theoretical accuracy guarantees. Our mean squared error bound enjoys a faster convergence rate than previous results, and we show that the proposed estimator is minimax optimal under the class of low-rank models. Furthermore, the procedure developed serves as an efficient completion method which guarantees consistent recovery of an order-$K$ $(d,\ldots,d)$-dimensional low-rank tensor using only $\tilde{\mathcal{O}}(Kd)$ noisy, quantized observations. We demonstrate the outperformance of our approach over previous methods on the tasks of clustering and collaborative filtering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源