论文标题
增强图像分割的主动学习
Reinforced active learning for image segmentation
论文作者
论文摘要
基于学习的语义细分方法有两个固有的挑战。首先,购买像素标签是昂贵且耗时的。其次,现实的细分数据集是高度不平衡的:有些类别比其他类别更丰富,使性能偏向最多的绩效。在本文中,我们有兴趣将人类标签的工作重点放在较大的数据库的一小部分,从而最大程度地减少了这项工作,同时最大程度地提高了分段模型的性能。我们为基于深度强化学习(RL)的语义细分提出了一种新的积极学习策略。代理商从一个未标记的数据库中识别一个策略,以选择与整个图像相反的小型图像区域(与整个图像相对)。根据训练的分割模型的预测和不确定性做出区域选择决策。我们的方法提出了针对主动学习的深Q-网络(DQN)公式的新修改,使其适应语义分割问题的大规模性质。我们测试了Camvid中的概念证明,并在大型数据集CityScapes中提供结果。在CityScapes上,我们基于RL区域的DQN方法比我们最具竞争力的基线要少30%的额外标签数据才能达到相同的性能。此外,我们发现我们的方法要求与基线相比,提供更多代表性不足类别的标签,从而提高其性能并帮助减轻阶级失衡。
Learning-based approaches for semantic segmentation have two inherent challenges. First, acquiring pixel-wise labels is expensive and time-consuming. Second, realistic segmentation datasets are highly unbalanced: some categories are much more abundant than others, biasing the performance to the most represented ones. In this paper, we are interested in focusing human labelling effort on a small subset of a larger pool of data, minimizing this effort while maximizing performance of a segmentation model on a hold-out set. We present a new active learning strategy for semantic segmentation based on deep reinforcement learning (RL). An agent learns a policy to select a subset of small informative image regions -- opposed to entire images -- to be labeled, from a pool of unlabeled data. The region selection decision is made based on predictions and uncertainties of the segmentation model being trained. Our method proposes a new modification of the deep Q-network (DQN) formulation for active learning, adapting it to the large-scale nature of semantic segmentation problems. We test the proof of concept in CamVid and provide results in the large-scale dataset Cityscapes. On Cityscapes, our deep RL region-based DQN approach requires roughly 30% less additional labeled data than our most competitive baseline to reach the same performance. Moreover, we find that our method asks for more labels of under-represented categories compared to the baselines, improving their performance and helping to mitigate class imbalance.