论文标题
多项目非耕作拍卖可获得良好的收入
Multi-item Non-truthful Auctions Achieve Good Revenue
论文作者
论文摘要
我们提出了一个通用框架,用于设计用于多项目添加性拍卖的大约收入最佳机制,该机制适用于真实和非真实拍卖。给定满足某些技术条件的(不一定是真实的)单项拍卖格式$ a $,我们同时经营物品拍卖,并增加了每个投标人的个性化入场费,必须在访问拍卖之前支付。这些进入费仅取决于投标人类型的先前分布,尤其是独立于实现的投标。我们使用一种新型的几何技术来限制由此产生的两部分关税机制的收入,该技术可以保证许多以前没有的常见非真实拍卖。我们的方法适应并扩展了Cai等[CDW16]的双重性框架,而不是真实的拍卖。 我们的框架可以与许多常见的拍卖格式一起使用,例如同时首价,同时第二价格和同时的全付拍卖。我们的第一价格和全付的结果是多维环境中非真实机制的首次收入保证,解决了文献中的一个空旷问题[RST17]。如果使用全付费拍卖,我们证明所产生的机制也是可信的,因为拍卖人在观察剂竞标后无法通过偏离陈述机制而受益。这是多项目加性拍卖的第一个静态可信机制,它始终取得了最佳收入。如果使用第二价格拍卖,我们将获得一个真实的$ O(1)$ - 近似机制,其固定入场费可通过在线学习技术进行调整。
We present a general framework for designing approximately revenue-optimal mechanisms for multi-item additive auctions, which applies to both truthful and non-truthful auctions. Given a (not necessarily truthful) single-item auction format $A$ satisfying certain technical conditions, we run simultaneous item auctions augmented with a personalized entry fee for each bidder that must be paid before the auction can be accessed. These entry fees depend only on the prior distribution of bidder types, and in particular are independent of realized bids. We bound the revenue of the resulting two-part tariff mechanism using a novel geometric technique that enables revenue guarantees for many common non-truthful auctions that previously had none. Our approach adapts and extends the duality framework of Cai et al [CDW16] beyond truthful auctions. Our framework can be used with many common auction formats, such as simultaneous first-price, simultaneous second-price, and simultaneous all-pay auctions. Our results for first price and all-pay are the first revenue guarantees of non-truthful mechanisms in multi-dimensional environments, addressing an open question in the literature [RST17]. If all-pay auctions are used, we prove that the resulting mechanism is also credible in the sense that the auctioneer cannot benefit by deviating from the stated mechanism after observing agent bids. This is the first static credible mechanism for multi-item additive auctions that achieves a constant factor of the optimal revenue. If second-price auctions are used, we obtain a truthful $O(1)$-approximate mechanism with fixed entry fees that are amenable to tuning via online learning techniques.