论文标题
通过未平衡溶剂中的氧化还原分子连接的电荷转移
Charge Transfer Through Redox Molecular Junctions in Non-Equilibrated Solvents
论文作者
论文摘要
在介电溶剂环境中运行的分子传导通常使用基于MARCUS电子转移理论的动力学速率来描述分子 - 金属电极界面。但是,在这种系统中,电荷传递的连续性质意味着在这种过程中,溶剂不一定达到平衡。在这里,我们概括了理论以解释溶剂非平衡,并考虑一个分子连接,该分子连接由一个耦合到两个金属电极并放置在可极化的溶剂中的电子供体 - 受体系统组成。我们通过求解强和弱摩擦限制的扩散方程,计算电荷电流及其波动行为来确定溶剂的非排序分布。在极限的极限中:缺乏溶剂或快速溶剂的松弛,电荷转移统计量是泊松式的,而这些限制之间的动态溶剂变得相关。发现非平衡电流的KRAMERS样周转率是溶剂阻尼的函数。最后,我们提出了一种使用纳米结构溶剂通道中溶剂介电响应的几何控制来调整溶剂诱导的阻尼的方法。
Molecular conduction operating in dielectric solvent environments are often described using kinetic rates based on Marcus theory of electron transfer at a molecule-metal electrode interface. However, the successive nature of charge transfer in such system implies that the solvent does not necessarily reach equilibrium in such process. Here we generalize the theory to account for solvent nonequilibrium and consider a molecular junction consisting of an electronic donor-acceptor system coupled to two metallic electrodes and placed in a polarizable solvent. We determine the nonequilbrium distribution of the solvent by solving diffusion equations in the strong- and weak-friction limits and calculate the charge current and its fluctuating behavior. In extreme limits: the absence of the solvent or fast solvent relaxation, the charge transfer statistics is Poissonian, while it becomes correlated by the dynamic solvent in between these limits. A Kramers-like turnover of the nonequilibrium current as a function of the solvent damping is found. Finally, we propose a way to tune the solvent-induced damping using geometrical control of the solvent dielectric response in nanostructured solvent channels.