论文标题
用于读取对接分支程序的最佳错误假越差
Optimal Error Pseudodistributions for Read-Once Branching Programs
论文作者
论文摘要
In a seminal work, Nisan (Combinatorica'92) constructed a pseudorandom generator for length $n$ and width $w$ read-once branching programs with seed length $O(\log n\cdot \log(nw)+\log n\cdot\log(1/\varepsilon))$ and error $\varepsilon$.将种子长度减少到$ o(\ log(nw/\ varepsilon))$仍然是一个核心问题,这将证明$ \ mathbf {bpl} = \ mathbf {l} $。但是,Nisan的构建$ n = W $没有改善,这与空间结合的derandomization最相关。 最近,在一件精美的作品中,布拉弗曼,科恩和加尔格(stoc'18)介绍了伪随机伪分发(PRPD)的概念,并明确地构造了带有种子长度$ \ tilde $ \ tilde {o}(\ log n \ log n \ cdot \ cdot \ cdot \ log \ log(nw)$ \ log的prpd的构建。 PRPD是伪随机生成器的放松,足以使$ \ mathbf {bpl} $降低,这也意味着击中集合。不幸的是,他们的构建非常参与和复杂。 Hoza和Zuckerman(focs'18)随后构建了一个更简单的命中式发电机,带有种子长度$ O(\ log n \ cdot \ log(nw)+\ log(1/\ varepsilon))$,但其技术仅限于击打集。 在这项工作中,我们构造了一个具有种子长度$$ o(\ log n \ cdot \ log(nw)\ cdot \ log \ log \ log \ log(nw)+\ log(1/\ varepsilon))的PRPD。此外,我们认为我们的构建和分析比Braverman,Cohen和Garg的工作更简单。
In a seminal work, Nisan (Combinatorica'92) constructed a pseudorandom generator for length $n$ and width $w$ read-once branching programs with seed length $O(\log n\cdot \log(nw)+\log n\cdot\log(1/\varepsilon))$ and error $\varepsilon$. It remains a central question to reduce the seed length to $O(\log (nw/\varepsilon))$, which would prove that $\mathbf{BPL}=\mathbf{L}$. However, there has been no improvement on Nisan's construction for the case $n=w$, which is most relevant to space-bounded derandomization. Recently, in a beautiful work, Braverman, Cohen and Garg (STOC'18) introduced the notion of a pseudorandom pseudo-distribution (PRPD) and gave an explicit construction of a PRPD with seed length $\tilde{O}(\log n\cdot \log(nw)+\log(1/\varepsilon))$. A PRPD is a relaxation of a pseudorandom generator, which suffices for derandomizing $\mathbf{BPL}$ and also implies a hitting set. Unfortunately, their construction is quite involved and complicated. Hoza and Zuckerman (FOCS'18) later constructed a much simpler hitting set generator with seed length $O(\log n\cdot \log(nw)+\log(1/\varepsilon))$, but their techniques are restricted to hitting sets. In this work, we construct a PRPD with seed length $$O(\log n\cdot \log (nw)\cdot \log\log(nw)+\log(1/\varepsilon)).$$ This improves upon the construction in [BCG18] by a $O(\log\log(1/\varepsilon))$ factor, and is optimal in the small error regime. In addition, we believe our construction and analysis to be simpler than the work of Braverman, Cohen and Garg.