论文标题

用于读取对接分支程序的最佳错误假越差

Optimal Error Pseudodistributions for Read-Once Branching Programs

论文作者

Chattopadhyay, Eshan, Liao, Jyun-Jie

论文摘要

In a seminal work, Nisan (Combinatorica'92) constructed a pseudorandom generator for length $n$ and width $w$ read-once branching programs with seed length $O(\log n\cdot \log(nw)+\log n\cdot\log(1/\varepsilon))$ and error $\varepsilon$.将种子长度减少到$ o(\ log(nw/\ varepsilon))$仍然是一个核心问题,这将证明$ \ mathbf {bpl} = \ mathbf {l} $。但是,Nisan的构建$ n = W $没有改善,这与空间结合的derandomization最相关。 最近,在一件精美的作品中,布拉弗曼,科恩和加尔格(stoc'18)介绍了伪随机伪分发(PRPD)的概念,并明确地构造了带有种子长度$ \ tilde $ \ tilde {o}(\ log n \ log n \ cdot \ cdot \ cdot \ log \ log(nw)$ \ log的prpd的构建。 PRPD是伪随机生成器的放松,足以使$ \ mathbf {bpl} $降低,这也意味着击中集合。不幸的是,他们的构建非常参与和复杂。 Hoza和Zuckerman(focs'18)随后构建了一个更简单的命中式发电机,带有种子长度$ O(\ log n \ cdot \ log(nw)+\ log(1/\ varepsilon))$,但其技术仅限于击打集。 在这项工作中,我们构造了一个具有种子长度$$ o(\ log n \ cdot \ log(nw)\ cdot \ log \ log \ log \ log(nw)+\ log(1/\ varepsilon))的PRPD。此外,我们认为我们的构建和分析比Braverman,Cohen和Garg的工作更简单。

In a seminal work, Nisan (Combinatorica'92) constructed a pseudorandom generator for length $n$ and width $w$ read-once branching programs with seed length $O(\log n\cdot \log(nw)+\log n\cdot\log(1/\varepsilon))$ and error $\varepsilon$. It remains a central question to reduce the seed length to $O(\log (nw/\varepsilon))$, which would prove that $\mathbf{BPL}=\mathbf{L}$. However, there has been no improvement on Nisan's construction for the case $n=w$, which is most relevant to space-bounded derandomization. Recently, in a beautiful work, Braverman, Cohen and Garg (STOC'18) introduced the notion of a pseudorandom pseudo-distribution (PRPD) and gave an explicit construction of a PRPD with seed length $\tilde{O}(\log n\cdot \log(nw)+\log(1/\varepsilon))$. A PRPD is a relaxation of a pseudorandom generator, which suffices for derandomizing $\mathbf{BPL}$ and also implies a hitting set. Unfortunately, their construction is quite involved and complicated. Hoza and Zuckerman (FOCS'18) later constructed a much simpler hitting set generator with seed length $O(\log n\cdot \log(nw)+\log(1/\varepsilon))$, but their techniques are restricted to hitting sets. In this work, we construct a PRPD with seed length $$O(\log n\cdot \log (nw)\cdot \log\log(nw)+\log(1/\varepsilon)).$$ This improves upon the construction in [BCG18] by a $O(\log\log(1/\varepsilon))$ factor, and is optimal in the small error regime. In addition, we believe our construction and analysis to be simpler than the work of Braverman, Cohen and Garg.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源