论文标题

贝叶斯分数因子模型

Bayesian Quantile Factor Models

论文作者

Gonçalves, Kelly C. M., Silva, Afonso C. B.

论文摘要

因子分析是评估多元依赖性和相互依赖的灵活技术。除了是一种用于降低多元数据维度的探索性工具外,它还允许估计常见因素,这些因素通常在实际问题中具有有趣的理论解释。但是,在某些特定情况下,利息涉及潜在因素在平均值中的影响,而且在整个响应分布中,以分位数为代表。本文介绍了一种新的模型,称为分位数因子模型,该模型将因子模型理论与无分布的分位数回归相结合,从而产生强大的统计方法。使用有效的Markov链蒙特卡洛算法对所提出的模型进行贝叶斯估计。与更常见的方法相比,使用不同设置中的合成数据集评估了所提出的模型,以评估其在不同分位数下的鲁棒性和性能。该模型还应用于金融部门数据集和心脏病实验。

Factor analysis is a flexible technique for assessment of multivariate dependence and codependence. Besides being an exploratory tool used to reduce the dimensionality of multivariate data, it allows estimation of common factors that often have an interesting theoretical interpretation in real problems. However, in some specific cases the interest involves the effects of latent factors not only in the mean, but in the entire response distribution, represented by a quantile. This paper introduces a new class of models, named quantile factor models, which combines factor model theory with distribution-free quantile regression producing a robust statistical method. Bayesian estimation for the proposed model is performed using an efficient Markov chain Monte Carlo algorithm. The proposed model is evaluated using synthetic datasets in different settings, in order to evaluate its robustness and performance under different quantiles compared to more usual methods. The model is also applied to a financial sector dataset and a heart disease experiment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源