论文标题
双重/辩护的机器学习,以通过G估计来进行动态治疗效果
Double/Debiased Machine Learning for Dynamic Treatment Effects via g-Estimation
论文作者
论文摘要
当分配多种治疗时,我们考虑了在设置中的治疗效果的估计,并且治疗可能会对未来的结果或治疗单位的状态产生因果影响。我们提出了双重/辩护的机器学习框架的扩展,以估计治疗的动态影响,可以将其视为Neyman正交(本地强大)的跨配件版本的$ G $估算版本中的$ G $估算。我们的方法适用于一类普通的非线性动态处理模型,称为结构嵌套平均模型,并允许使用机器学习方法控制潜在的高维状态变量,但要遵守均方误差保证,同时仍允许参数估计和置信区间构建感兴趣的结构参数。这些结构参数可用于以参数速率对任何目标动态策略进行非政策评估,但要受到数据生成过程的半参数限制。我们的工作基于递归剥离过程,典型地估计为$ g $估计,并在每个阶段都强烈凸出目标,这使我们能够在多个方向上扩展$ g $估计的框架:i)提供有限的样本保证,以提供有限的样本保证,ii)估计在固定的特征方面估计非线性效应,以使固定的单位范围内的固定效果,以置于固定的单位范围,以置换型单位,以置换型单位,以置换式求职者,以置换式求职者,以置换式求职者,以置换式求职者,以置换式求职者,以置换式求职者,以置换式的功能,以置换型单位效果,并在较高的特征上启用,并提供一个动态的功能。对于异质效应,iii)允许目标结构函数的高维稀疏参数化,从而通过递归套索算法实现自动模型选择。我们还为在较长的地平线和平稳条件下的单个处理单元中造成的数据提供了保证。
We consider the estimation of treatment effects in settings when multiple treatments are assigned over time and treatments can have a causal effect on future outcomes or the state of the treated unit. We propose an extension of the double/debiased machine learning framework to estimate the dynamic effects of treatments, which can be viewed as a Neyman orthogonal (locally robust) cross-fitted version of $g$-estimation in the dynamic treatment regime. Our method applies to a general class of non-linear dynamic treatment models known as Structural Nested Mean Models and allows the use of machine learning methods to control for potentially high dimensional state variables, subject to a mean square error guarantee, while still allowing parametric estimation and construction of confidence intervals for the structural parameters of interest. These structural parameters can be used for off-policy evaluation of any target dynamic policy at parametric rates, subject to semi-parametric restrictions on the data generating process. Our work is based on a recursive peeling process, typical in $g$-estimation, and formulates a strongly convex objective at each stage, which allows us to extend the $g$-estimation framework in multiple directions: i) to provide finite sample guarantees, ii) to estimate non-linear effect heterogeneity with respect to fixed unit characteristics, within arbitrary function spaces, enabling a dynamic analogue of the RLearner algorithm for heterogeneous effects, iii) to allow for high-dimensional sparse parameterizations of the target structural functions, enabling automated model selection via a recursive lasso algorithm. We also provide guarantees for data stemming from a single treated unit over a long horizon and under stationarity conditions.