论文标题
D2C 2.0:通过无模型ILQR来控制随机非线性系统的基于数据的基于数据的方法
D2C 2.0: Decoupled Data-Based Approach for Learning to Control Stochastic Nonlinear Systems via Model-Free ILQR
论文作者
论文摘要
在本文中,我们提出了反馈策略的结构化线性参数化,以解决无模型的随机最佳控制问题。在理论上和经验分析中,在较小的噪声假设下,在较小的噪声假设下,这种参数化证实了这种参数化,该原理被证明是几乎最佳的。此外,我们将迭代线性二次调节器(ILQR)的无模型版本纳入我们的框架中。对系统上一系列复杂性的模拟表明,所得算法能够利用ILQR的上级二阶收敛性。结果,它是快速且可扩展到各种高维系统的。比较与最先进的强化学习算法(深层确定性政策梯度(DDPG)技术)进行比较,以证明我们在培训效率方面的重要优点。
In this paper, we propose a structured linear parameterization of a feedback policy to solve the model-free stochastic optimal control problem. This parametrization is corroborated by a decoupling principle that is shown to be near-optimal under a small noise assumption, both in theory and by empirical analyses. Further, we incorporate a model-free version of the Iterative Linear Quadratic Regulator (ILQR) in a sample-efficient manner into our framework. Simulations on systems over a range of complexities reveal that the resulting algorithm is able to harness the superior second-order convergence properties of ILQR. As a result, it is fast and is scalable to a wide variety of higher dimensional systems. Comparisons are made with a state-of-the-art reinforcement learning algorithm, the Deep Deterministic Policy Gradient (DDPG) technique, in order to demonstrate the significant merits of our approach in terms of training-efficiency.