论文标题
垂直磁场中的雷利 - 贝纳德对流的流程度
Flow regimes of Rayleigh-Bénard convection in a vertical magnetic field
论文作者
论文摘要
研究了垂直静态磁场对液体金属雷利 - 贝纳德对流的动量和热量的流动结构和全球传输特性的影响。实验以统一纵横比的圆柱对流单元进行,并以$ \ mathit {pr} = 0.029 $的低prandtl数量填充。使用多个超声多普勒多普勒速度计的传感器和热电偶对参数范围的多个超声多普勒速度测定传感器和热电偶的变化进行系统探测,该参数范围由$ 10^6 \ le \ le \ le \ le \ le Mathit {ra} {ra} \ le 6 \ le 6 \ le 6 \ le 6 \ times 10^7 $ and Hartmann $ $ 1000。我们的同时多探针温度和速度测量表明,大规模循环如何受磁场强度(或Hartmann数字)的增加。液态金属引起的洛伦兹力量首先抑制大规模循环的振荡,以低$ \ \ \ mathit {ha} $抑制,然后将一个旋转的结构转变为一个蜂窝大规模的模式,该模式由多个上下的下降居住在中间$ \ mathit {ha} $中,最终将任何最高的动态驱散到$ the Bul the Bul the Bul the Bah bah ba Ha Ha Ha Baiment of Fliep the Bah ha ba Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Bai甚至在Chandrasekhar的线性不稳定性阈值以下的对流流。因此,我们的研究在实验上证明了壁模中的壁模式的存在。在大量的Hartmann数字上,转移的热量的大小几乎不受流体动量的稳定减少的影响。我们将实验性的全球运输分析扩展到动量转移,并包括雷诺数对Hartmann数字的依赖性。
The effects of a vertical static magnetic field on the flow structure and global transport properties of momentum and heat in liquid metal Rayleigh-Bénard convection are investigated. Experiments are conducted in a cylindrical convection cell of unity aspect ratio, filled with the alloy GaInSn at a low Prandtl number of $\mathit{Pr}=0.029$. Changes of the large-scale velocity structure with increasing magnetic field strength are probed systematically using multiple ultrasound Doppler velocimetry sensors and thermocouples for a parameter range that is spanned by Rayleigh numbers of $10^6 \le \mathit{Ra} \le 6\times 10^7$ and Hartmann numbers of $\mathit{Ha} \le 1000$. Our simultaneous multi-probe temperature and velocity measurements demonstrate how the large-scale circulation is affected by an increasing magnetic field strength (or Hartmann number). Lorentz forces induced in the liquid metal first suppress the oscillations of the large-scale circulation at low $\mathit{Ha}$, then transform the one-roll structure into a cellular large-scale pattern consisting of multiple up- and downwellings for intermediate $\mathit{Ha}$, before finally expelling any fluid motion out of the bulk at the highest accessible $\mathit{Ha}$ leaving only a near-wall convective flow that persists even below Chandrasekhar's linear instability threshold. Our study thus proves experimentally the existence of wall modes in confined magnetoconvection. The magnitude of the transferred heat remains nearly unaffected by the steady decrease of the fluid momentum over a large range of Hartmann numbers. We extend the experimental global transport analysis to momentum transfer and include the dependence of the Reynolds number on the Hartmann number.