论文标题

带有噪声对齐的GCSA代码,用于安全编码的多方批次矩阵乘法

GCSA Codes with Noise Alignment for Secure Coded Multi-Party Batch Matrix Multiplication

论文作者

Chen, Zhen, Jia, Zhuqing, Wang, Zhiying, Jafar, Syed A.

论文摘要

考虑了安全的多方批次矩阵乘法问题(SMBMM),其目标是通过在S服务器上分发计算,使主能够有效地计算两个大型矩阵的成对产品。任何X勾结服务器都不会获得有关输入的信息,并且主人没有获得有关产品以外的输入的其他信息。基于跨空间比对代码,提出了一种称为具有噪声比对(GCSA-NA)(GCSA-NA)(GCSA-NA)的通用交叉子空间比对代码的解决方案。对SMBMM的最先进的解决方案是Nodehi和Maddah-Ali提出的称为多项式共享(PS)的编码方案。 GCSA-NA在几个关键方面都优于PS代码 - 更高效,更安全的服务器间通信,较低的延迟,灵活的服务器间网络拓扑,有效的批处理处理以及对Stragglers的耐受性。噪声比对的概念也可以与N源交叉子空间对齐(N-CSA)代码和快速矩阵乘法算法(如Strassen的构造)结合使用。此外,噪声对准可以应用于对称安全的私人信息检索中以实现渐近能力。

A secure multi-party batch matrix multiplication problem (SMBMM) is considered, where the goal is to allow a master to efficiently compute the pairwise products of two batches of massive matrices, by distributing the computation across S servers. Any X colluding servers gain no information about the input, and the master gains no additional information about the input beyond the product. A solution called Generalized Cross Subspace Alignment codes with Noise Alignment (GCSA-NA) is proposed in this work, based on cross-subspace alignment codes. The state of art solution to SMBMM is a coding scheme called polynomial sharing (PS) that was proposed by Nodehi and Maddah-Ali. GCSA-NA outperforms PS codes in several key aspects - more efficient and secure inter-server communication, lower latency, flexible inter-server network topology, efficient batch processing, and tolerance to stragglers. The idea of noise alignment can also be combined with N-source Cross Subspace Alignment (N-CSA) codes and fast matrix multiplication algorithms like Strassen's construction. Moreover, noise alignment can be applied to symmetric secure private information retrieval to achieve the asymptotic capacity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源