论文标题
确定点过程,随机对数基因及以后
Determinantal Point Processes, Stochastic Log-Gases, and Beyond
论文作者
论文摘要
确定点过程(DPP)是随机非负式rad radon量度的合奏,其相关函数均由由称为相关内核的积分内核指定的决定因素给出。首先,我们展示了新的DPP方案,其中一对希尔伯特空间之间的部分等轴测概念起着重要作用。展示了一,二和更高维的空间中DPP的许多例子,其中给出了几种类型的从有限的DPP到无限DPP的弱收敛性。 DPP的动力扩展是在从未相互碰撞的扩散颗粒的一维系统中实现的。它们被视为一维随机对数基因,或限制在一维空间中的二维库仑气体。在第二部分中,我们将这种相互作用的粒子系统在一个维度上考虑。我们介绍了确定性martingale的概念,并证明,如果系统具有确定性的martingale代表(DMR),那么它是确定性随机过程(DSP),因为所有时空相关函数都会由决定性范围表示。在最后一节中,我们在简单地连接的$ \ mathbb {c} $的合适子域中构建了高斯自由场(GFF)的过程,并与在域边界上定义的相互作用粒子系统结合。在那里,我们使用了由相互作用粒子系统驱动的多个schramm-loewner进化(SLE)。我们证明,如果驾驶过程是在第二部分中研究的日志基因的时间变化,则带有多个SLE的GFF是静止的。该平稳性定义了GFF的等效关系,这将被视为Miller和Sheffield研究的假想表面的概括。
A determinantal point process (DPP) is an ensemble of random nonnegative-integer-valued Radon measures, whose correlation functions are all given by determinants specified by an integral kernel called the correlation kernel. First we show our new scheme of DPPs in which a notion of partial isometies between a pair of Hilbert spaces plays an important role. Many examples of DPPs in one-, two-, and higher-dimensional spaces are demonstrated, where several types of weak convergence from finite DPPs to infinite DPPs are given. Dynamical extensions of DPP are realized in one-dimensional systems of diffusive particles conditioned never to collide with each other. They are regarded as one-dimensional stochastic log-gases, or the two-dimensional Coulomb gases confined in one-dimensional spaces. In the second section, we consider such interacting particle systems in one dimension. We introduce a notion of determinantal martingale and prove that, if the system has determinantal martingale representation (DMR), then it is a determinantal stochastic process (DSP) in the sense that all spatio-temporal correlation function are expressed by a determinant. In the last section, we construct processes of Gaussian free fields (GFFs) on simply connected proper subdomains of $\mathbb{C}$ coupled with interacting particle systems defined on boundaries of the domains. There we use multiple Schramm--Loewner evolutions (SLEs) driven by the interacting particle systems. We prove that, if the driving processes are time-changes of the log-gases studied in the second section, then the obtained GFF with multiple SLEs are stationary. The stationarity defines an equivalence relation of GFFs, which will be regarded as a generalization of the imaginary surface studied by Miller and Sheffield.