论文标题

平衡次二次和成本的有效框架

An Efficient Framework for Balancing Submodularity and Cost

论文作者

Nikolakaki, Sofia Maria, Ene, Alina, Terzi, Evimaria

论文摘要

在经典的选择问题中,输入由元素集合组成,目标是从集合中选择一部分元素,以使某些目标函数$ f $最大化。该问题已在数据挖掘社区中进行了广泛的研究,它具有多个应用程序,包括在社交网络,团队形成和推荐系统中最大化的影响。一个特别受欢迎的配方,捕获许多此类应用的需求是目标函数$ f $是单调和非负suppodular函数。在这些情况下,可以使用简单的贪婪$(1- \ frac {1} {e})$ - 近似算法来解决相应的计算问题。 在本文中,我们考虑了上述公式的概括,在该公式中,目标是优化一个功能,该功能最大化了suppodular函数$ f $减去线性成本函数$ c $。这种表述看起来更自然,尤其是当一个人需要在目标函数的价值和所支付的成本之间取得平衡以选择所选元素时。我们都在离线设置中解决了此问题的变体,该集合是先验收藏的,以及在线设置中,该集合的元素以在线方式到达。我们证明,通过使用标准贪婪算法的简单变体(用于子解次优化),我们可以设计具有可证明的近似保证的算法,非常有效,在实践中非常有效。

In the classical selection problem, the input consists of a collection of elements and the goal is to pick a subset of elements from the collection such that some objective function $f$ is maximized. This problem has been studied extensively in the data-mining community and it has multiple applications including influence maximization in social networks, team formation and recommender systems. A particularly popular formulation that captures the needs of many such applications is one where the objective function $f$ is a monotone and non-negative submodular function. In these cases, the corresponding computational problem can be solved using a simple greedy $(1-\frac{1}{e})$-approximation algorithm. In this paper, we consider a generalization of the above formulation where the goal is to optimize a function that maximizes the submodular function $f$ minus a linear cost function $c$. This formulation appears as a more natural one, particularly when one needs to strike a balance between the value of the objective function and the cost being paid in order to pick the selected elements. We address variants of this problem both in an offline setting, where the collection is known a priori, as well as in online settings, where the elements of the collection arrive in an online fashion. We demonstrate that by using simple variants of the standard greedy algorithm (used for submodular optimization) we can design algorithms that have provable approximation guarantees, are extremely efficient and work very well in practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源