论文标题
单位磁盘图的稀疏跳班跨度
Sparse Hop Spanners for Unit Disk Graphs
论文作者
论文摘要
给定集合中的单元磁盘图$ g $在飞机上的点$ p $是一个几何图,当时两个点$ p,q \ in p $ in P $,并且仅当$ | pq | \ leq 1 $。跨度$ g'的$ g $ of $ g $是$ k $ - hop扳手,并且仅当每个边缘$ pq \ in g $中时,最多$ k $ edges都有$ p,q $ in $ g'$之间的路径。我们为平面中的单位磁盘图获得以下结果。 (i)每个$ n $ vertex单位磁盘图都有$ 5 $ - 搭配的扳手,最多为$ 5.5N $边缘。我们分析了Biniaz(2020)建造的跨越家族,并将边缘数量从9N $提高到5.5n $。 (ii)使用新结构,我们表明每$ n $ vertex单元磁盘图都有$ 3 $ - hop扳手,最多最多为$ 11N $。 (iii)每个$ n $ -vertex单位磁盘图都有$ 2 $ -HOP扳手,带有$ O(n \ log n)$边缘。这是第一个$ 2 $ hop跨越的非平凡结构。 (iv)对于每个足够大的正整数$ n $,都存在一个圆圈的$ p $ $ n $点,以至于每架$ p $上的飞机跳架都可以伸展伸展因子至少$ 4 $。以前,众所周知,不超过$ 2 $的下限。 (v)对于一个圆上设置的每个有限点,都存在一个平面(即无交叉)$ 4 $ -HOP扳手。因此,这为圆上的点提供了紧密的界限。 (vi)对于任何正整数$ k $,最高$ k $ - hop跨度不能取决于$ k $的函数。
A unit disk graph $G$ on a given set $P$ of points in the plane is a geometric graph where an edge exists between two points $p,q \in P$ if and only if $|pq| \leq 1$. A spanning subgraph $G'$ of $G$ is a $k$-hop spanner if and only if for every edge $pq\in G$, there is a path between $p,q$ in $G'$ with at most $k$ edges. We obtain the following results for unit disk graphs in the plane. (I) Every $n$-vertex unit disk graph has a $5$-hop spanner with at most $5.5n$ edges. We analyze the family of spanners constructed by Biniaz (2020) and improve the upper bound on the number of edges from $9n$ to $5.5n$. (II) Using a new construction, we show that every $n$-vertex unit disk graph has a $3$-hop spanner with at most $11n$ edges. (III) Every $n$-vertex unit disk graph has a $2$-hop spanner with $O(n\log n)$ edges. This is the first nontrivial construction of $2$-hop spanners. (IV) For every sufficiently large positive integer $n$, there exists a set $P$ of $n$ points on a circle, such that every plane hop spanner on $P$ has hop stretch factor at least $4$. Previously, no lower bound greater than $2$ was known. (V) For every finite point set on a circle, there exists a plane (i.e., crossing-free) $4$-hop spanner. As such, this provides a tight bound for points on a circle. (VI) The maximum degree of $k$-hop spanners cannot be bounded from above by a function of $k$ for any positive integer $k$.