论文标题

mem_ge:一种来自太阳能X射线可见度的图像重建的新的最大熵方法

MEM_GE: a new maximum entropy method for image reconstruction from solar X-ray visibilities

论文作者

Massa, Paolo, Schwartz, Richard, Tolbert, A Kim, Massone, Anna Maria, Dennis, Brian R, Piana, Michele, Benvenuto, Federico

论文摘要

最大熵是一种图像重建方法,以图像为图像稀疏所占据的视野,因此特别适合实现超分辨率效应。尽管已广泛用于图像反卷积,但已在射电天文学中提出了该方法,用于分析空间频域中的观察结果,并且已经实现了来自太阳能X射线傅立叶数据的图像重建的交互式数据语言(IDL)代码。但是,该代码依赖于最大熵方法解决的约束优化问题的非凸公式,这有时会导致不可靠的重建,其特征是非物理缩水效果。 本文基于凸功能的约束最小化,引入了一种新的方法来最大值熵。如果是由Reuven Ramaty高能太阳能光谱成像仪(RHESSI)记录的观察结果,所得代码提供了前一个算法的相同的超分辨率效应,同时在该代码产生非物理重建时也可以正常工作。还提供了使用合成数据测试算法的结果,该算法模拟了太阳轨道中的光谱仪/望远镜的观察结果。新代码可在太阳能软件(SSW)树的{\ em {hessi}}文件夹中可用。

Maximum Entropy is an image reconstruction method conceived to image a sparsely occupied field of view and therefore particularly appropriate to achieve super-resolution effects. Although widely used in image deconvolution, this method has been formulated in radio astronomy for the analysis of observations in the spatial frequency domain, and an Interactive Data Language (IDL) code has been implemented for image reconstruction from solar X-ray Fourier data. However, this code relies on a non-convex formulation of the constrained optimization problem addressed by the Maximum Entropy approach and this sometimes results in unreliable reconstructions characterized by unphysical shrinking effects. This paper introduces a new approach to Maximum Entropy based on the constrained minimization of a convex functional. In the case of observations recorded by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), the resulting code provides the same super-resolution effects of the previous algorithm, while working properly also when that code produces unphysical reconstructions. Results are also provided of testing the algorithm with synthetic data simulating observations of the Spectrometer/Telescope for Imaging X-rays (STIX) in Solar Orbiter. The new code is available in the {\em{HESSI}} folder of the Solar SoftWare (SSW)tree.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源