论文标题

流行病学的线性回归模型

Linear Regression Models in Epidemiology

论文作者

Varaksin, Anatoly N., Panov, Vladimir G.

论文摘要

本文建议使用回归模型来分析流行病学数据,该模型能够对这种数据进行主题(流行病学)解释,无论是与不相关的或相关的预测指标。为此,响应函数不仅应包括预测因子中的术语,而且还应包括更高级的术语(例如二次和跨术语)。对于回归模型的流行病学解释,该建议是构建从一般回归函数得出的条件函数,并具有固定固定的所有预测变量的值,但一个预测因子除外。与基于线性指标模型的传统技术不同,我们的方法是解释任何变量的系数,我们的方法提出了解释此条件函数的方法,这对于任何依赖所有其他预测变量值的预测变量都是多变量的。正是这样的功能可以描述y和预测因子之间的关系,在不同的预测变量域中具有不同的形式。本文讨论了涉及相关和不相关的预测变量的案例之间提出的条件功能的解释差异。示例说明了流行病学和环境数据的回归模型的构建和分析。

The paper proposes to analyze epidemiological data using regression models which enable subject-matter (epidemiological) interpretation of such data whether with uncorrelated or correlated predictors. To this end, response functions should include not only terms linear in predictors but also higher order ones (e.g. quadratic and cross terms). For epidemiological interpretation of a regression model, the suggestion is to construct conditional functions derived from the general regression function with the values of all predictor variables held fixed excepting one predictor. Unlike the conventional techniques based on linear-predictor models in which the coefficient at any variable is interpreted, our approach proposes to interpret this conditional function, which is multivariate for any predictor being dependent on the values of all the other predictors. It is such functions that can describe relationships between Y and a predictor that have different forms in different predictor domains. The paper discusses differences in the interpretation of the proposed conditional functions between cases involving correlated and uncorrelated predictor variables. The construction and analysis of regression models for epidemiological and environmental data are illustrated with examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源