论文标题
黑洞磁层中反式磁性喷气机的特性
Properties of Trans-fast Magnetosonic Jets in Black Hole Magnetospheres
论文作者
论文摘要
据信,从强力区域到渐近平坦的时空区域的相对论喷气机在距离的几个数量级上行驶,由几个一般的相对论磁性水力动力学(GRMHD)组成。我们提出了一种半分析方法,用于建模反式磁性相对论射流的全局结构,该射流应从附近的血浆源中弹出一个黑洞,该漏斗区域被密集积聚的流量和黑洞周围的磁盘盘。我们的模型始终沿着穿透黑洞地平线的磁场线的GRMHD溶液的流入和流出部分。在通过负能量GRMHD流入将黑洞的旋转能在电磁上提取之后,巨大的电磁能通量随后从血浆源传播到流出源的流出区域,在流出区域,电磁能转换为流体动能。最终,加速流出必须超过快速磁波波速度。我们将半分析的反式磁通流模型应用于抛物线和分裂单位磁场磁场构型的黑洞磁层,并讨论一般流动性能。也就是说,射流加速度,射流磁化以及黑洞磁层的某些特征表面的位置。我们已经确认,在较大距离处,GRMHD射流溶液与先前已知的Trans-Fast特殊相对论磁性水力动力学(SRMHD)射流性能非常吻合。该模型的灵活性提供了一种迅速和启发式的方式,可以近似全局的GRMHD Trans-Fast-fastsonic Jet性能。
Traveling across several order of magnitude in distance, relativistic jets from strong gravity region to asymptotic flat spacetime region are believed to consist of several general relativistic magnetohydrodynamic (GRMHD) processes. We present a semi-analytical approach for modeling the global structures of a trans-fast magnetosonic relativistic jet, which should be ejected from a plasma source nearby a black hole in a funnel region enclosed by dense accreting flow and also disk corona around the black hole. Our model consistently includes the inflow and outflow part of the GRMHD solution along the magnetic field lines penetrating the black hole horizon. After the rotational energy of the black hole is extracted electromagnetically by the negative energy GRMHD inflow, the huge electromagnetic energy flux then propagates from the inflow to the outflow region across the plasma source, and in the outflow region the electromagnetic energy converts to the fluid kinetic energy. Eventually, the accelerated outflow must exceed the fast-magnetosonic wave speed. We apply the semi-analytical trans-fast magnetosonic flow model to the black hole magnetosphere for both parabolic and split-monopole magnetic field configurations, and discuss the general flow properties; that is, jet acceleration, jet magnetization, and the locations of some characteristic surfaces of the black hole magnetosphere. We have confirmed that, at large distance, the GRMHD jet solutions are in good agreement with the previously known trans-fast special relativistic magnetohydrodynamic (SRMHD) jet properties, as expected. The flexibility of the model provides a prompt and heuristic way to approximate the global GRMHD trans-fast magnetosonic jet properties.