论文标题

迈向Feulgen染色图像中分割核的完整管道

Towards a Complete Pipeline for Segmenting Nuclei in Feulgen-Stained Images

论文作者

Macarini, Luiz Antonio Buschetto, von Wangenheim, Aldo, Daltoé, Felipe Perozzo, Onofre, Alexandre Sherlley Casimiro, Onofre, Fabiana Botelho de Miranda, Stemmer, Marcelo Ricardo

论文摘要

宫颈癌是世界上第二大最常见的癌症类型。在某些国家,由于不存在或不充分的筛查,经常在晚期发现它,因此通常没有或无法承受任何标准的治疗选择。这是一种致命的疾病,可以从早期检测方法中受益。它通常是通过细胞学检查来完成的,这些检查包括在视觉上检查核寻找形态学改变。由于它是由人类完成的,因此自然而然地引入了一些主观性。计算方法可用于减少这一点,其中该过程的第一阶段是核分割。在这种情况下,我们提出了使用卷积神经网络在Feulgen染色图像中对核分割的完整管道。在这里,我们显示了整个分割过程,因为样本的收集,通过预处理,培训网络,后处理和结果评估。我们达到了0.78的总体IOU,显示了对Feulgen染色图像的核分割方法的负担能力。该代码可在:https://github.com/luizbuschetto/feulgen_nuclei_sementation中获得。

Cervical cancer is the second most common cancer type in women around the world. In some countries, due to non-existent or inadequate screening, it is often detected at late stages, making standard treatment options often absent or unaffordable. It is a deadly disease that could benefit from early detection approaches. It is usually done by cytological exams which consist of visually inspecting the nuclei searching for morphological alteration. Since it is done by humans, naturally, some subjectivity is introduced. Computational methods could be used to reduce this, where the first stage of the process would be the nuclei segmentation. In this context, we present a complete pipeline for the segmentation of nuclei in Feulgen-stained images using Convolutional Neural Networks. Here we show the entire process of segmentation, since the collection of the samples, passing through pre-processing, training the network, post-processing and results evaluation. We achieved an overall IoU of 0.78, showing the affordability of the approach of nuclei segmentation on Feulgen-stained images. The code is available in: https://github.com/luizbuschetto/feulgen_nuclei_segmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源