论文标题

残留的sparse模糊$ c $ -MEANS聚类包含形态重建和小波框架

Residual-Sparse Fuzzy $C$-Means Clustering Incorporating Morphological Reconstruction and Wavelet frames

论文作者

Wang, Cong, Pedrycz, Witold, Li, ZhiWu, Zhou, MengChu, Zhao, Jun

论文摘要

与其直接利用观察到的图像,包括一些异常值,噪声或强度不均匀性,而是使用其理想值(例如无噪声图像)对聚类产生了有利的影响。因此,观察到的图像及其理想值之间残差(例如未知噪声)的准确估计是一项重要任务。为此,我们提出了一个基于$ \ ell_0 $正则化的模糊$ C $ -MEANS(FCM)算法,该算法结合了形态重建操作和紧密的小波框架变换。为了在细节保存和抑制噪声之间实现合理的权衡,形态重建用于过滤观察到的图像。通过组合观察到的图像和过滤的图像,可以生成加权总和图像。由于紧密的小波框架系统具有图像的稀疏表示,因此它被用来分解加权总和图像,从而形成其相应的特征集。将其作为集群数据作为数据,我们通过对功能集及其理想值之间的残差施加$ \ ell_0 $正规化项来提高改进的FCM算法,这意味着获得了对残差的有利估计,理想值参与聚类。由于图像分割自然遇到,还将空间信息引入聚类。此外,它使对残差的估计更加可靠。为了进一步增强改进的FCM算法的分割效应,我们还采用了形态重建来平滑通过聚类产生的标签。最后,基于原型和平滑标签,通过使用紧密的小波框架重建操作来重建分段的图像。报道的合成,医学和颜色图像的实验结果表明,所提出的算法有效有效,并且表现优于其他算法。

Instead of directly utilizing an observed image including some outliers, noise or intensity inhomogeneity, the use of its ideal value (e.g. noise-free image) has a favorable impact on clustering. Hence, the accurate estimation of the residual (e.g. unknown noise) between the observed image and its ideal value is an important task. To do so, we propose an $\ell_0$ regularization-based Fuzzy $C$-Means (FCM) algorithm incorporating a morphological reconstruction operation and a tight wavelet frame transform. To achieve a sound trade-off between detail preservation and noise suppression, morphological reconstruction is used to filter an observed image. By combining the observed and filtered images, a weighted sum image is generated. Since a tight wavelet frame system has sparse representations of an image, it is employed to decompose the weighted sum image, thus forming its corresponding feature set. Taking it as data for clustering, we present an improved FCM algorithm by imposing an $\ell_0$ regularization term on the residual between the feature set and its ideal value, which implies that the favorable estimation of the residual is obtained and the ideal value participates in clustering. Spatial information is also introduced into clustering since it is naturally encountered in image segmentation. Furthermore, it makes the estimation of the residual more reliable. To further enhance the segmentation effects of the improved FCM algorithm, we also employ the morphological reconstruction to smoothen the labels generated by clustering. Finally, based on the prototypes and smoothed labels, the segmented image is reconstructed by using a tight wavelet frame reconstruction operation. Experimental results reported for synthetic, medical, and color images show that the proposed algorithm is effective and efficient, and outperforms other algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源