论文标题

切片雾无线电访问网络中的模式选择和资源分配:一种增强学习方法

Mode Selection and Resource Allocation in Sliced Fog Radio Access Networks: A Reinforcement Learning Approach

论文作者

Xiang, Hongyu, Peng, Mugen, Sun, Yaohua, Yan, Shi

论文摘要

雾无线电访问网络(F-RAN)中的模式选择和资源分配已被提倡作为提高光谱和能源效率的关键技术。在本文中,我们调查了上行链路F-RAN中模式选择和资源分配的联合优化,其中传统的用户设备(UES)和FOG UE都由构造的网络切片实例提供。相关的优化被提出为混合企业编程问题,并提出了正交和多路复用的亚通道分配策略以确保切片隔离。由机器学习的开发激励,开发了两种基于强化学习的算法,以解决传统和雾UES的特定性能要求下的原始高复杂性问题。提案的基本思想是根据环境喂养的直接奖励生成良好的模式选择策略。仿真结果验证了我们提出的算法的好处,并表明可以实现系统功耗和队列延迟之间的权衡。

The mode selection and resource allocation in fog radio access networks (F-RANs) have been advocated as key techniques to improve spectral and energy efficiency. In this paper, we investigate the joint optimization of mode selection and resource allocation in uplink F-RANs, where both of the traditional user equipments (UEs) and fog UEs are served by constructed network slice instances. The concerned optimization is formulated as a mixed-integer programming problem, and both the orthogonal and multiplexed subchannel allocation strategies are proposed to guarantee the slice isolation. Motivated by the development of machine learning, two reinforcement learning based algorithms are developed to solve the original high complexity problem under traditional and fog UEs' specific performance requirements. The basic idea of the proposals is to generate a good mode selection policy according to the immediate reward fed back by an environment. Simulation results validate the benefits of our proposed algorithms and show that a tradeoff between system power consumption and queue delay can be achieved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源