论文标题

关于一个变量中向量领域的普遍展开:科斯托夫定理的证明

On the universal unfolding of vector fields in one variable: A proof of Kostov's theorem

论文作者

Klimes, Martin, Rousseau, Christiane

论文摘要

在本说明中,我们介绍了Kostov定理的变体,内容涉及复杂分析$ 1 $维矢量字段的抛物线点的多种变形。首先,我们提供了科斯托夫定理的独立证明,并证明这种广泛的变形确实是普遍的。然后,我们将表现出普遍性的真实分析和正式案例概括为$ c^\ infty $案例,在那里我们表明只有广义性是可能的。

In this note we present variants of Kostov's theorem on a versal deformation of a parabolic point of a complex analytic $1$-dimensional vector field. First we provide a self-contained proof of Kostov's theorem, together with a proof that this versal deformation is indeed universal. We then generalize to the real analytic and formal cases, where we show universality, and to the $C^\infty$ case, where we show that only versality is possible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源