论文标题

通过数据拆分控制率控制率

False Discovery Rate Control via Data Splitting

论文作者

Dai, Chenguang, Lin, Buyu, Xing, Xin, Liu, Jun S.

论文摘要

在许多科学领域,选择与给定响应变量相关的相关特征是一个重要问题。通过虚假发现率(FDR)控制量化质量和选择结果的不确定性已引起人们的关注。本文介绍了一种使用数据拆分策略来渐近地控制FDR的方法,同时保持高功率。对于每个功能,该方法通过通过数据拆分估算两个独立的回归系数来构建测试统计量。 FDR控制是通过利用统计属性的属性来实现的,对于任何空功能,其采样分布对称为零。此外,我们提出了多个数据拆分(MDS)来稳定选择结果并增强功率。有趣且令人惊讶的是,随着FDR仍处于控制状态,MDS不仅有助于克服样本分裂引起的功率损失,而且与所有其他考虑的方法相比,错误发现比例(FDP)的方差较低。我们证明,所提出的数据分解方法可以在低维度和高维的线性和高斯图形模型的任何指定水平上渐近地控制FDR。通过密集的仿真研究和真实数据应用,我们表明所提出的方法对特征的未知分布,易于实现和计算高效,并且通常是竞争对手中最强大的方法,尤其是当信号较弱,相关性或部分相关性在特征之间很高。

Selecting relevant features associated with a given response variable is an important issue in many scientific fields. Quantifying quality and uncertainty of a selection result via false discovery rate (FDR) control has been of recent interest. This paper introduces a way of using data-splitting strategies to asymptotically control the FDR while maintaining a high power. For each feature, the method constructs a test statistic by estimating two independent regression coefficients via data splitting. FDR control is achieved by taking advantage of the statistic's property that, for any null feature, its sampling distribution is symmetric about zero. Furthermore, we propose Multiple Data Splitting (MDS) to stabilize the selection result and boost the power. Interestingly and surprisingly, with the FDR still under control, MDS not only helps overcome the power loss caused by sample splitting, but also results in a lower variance of the false discovery proportion (FDP) compared with all other methods in consideration. We prove that the proposed data-splitting methods can asymptotically control the FDR at any designated level for linear and Gaussian graphical models in both low and high dimensions. Through intensive simulation studies and a real-data application, we show that the proposed methods are robust to the unknown distribution of features, easy to implement and computationally efficient, and are often the most powerful ones amongst competitors especially when the signals are weak and the correlations or partial correlations are high among features.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源