论文标题
复杂网络的迭代全球模型
Iterated Global Models for Complex Networks
论文作者
论文摘要
我们将迭代的全局模型作为确定性图形过程介绍,该过程模拟复杂网络的几个属性。在此模型中,对于规定的基数的每组节点的每组节点,我们添加了一个与$ S $中每个节点相邻的新节点。我们专注于$ S $的大小约为每个时间步中的节点数量的一半,我们将其称为半模型。半模型可证明会生成随着时间的变化,光谱膨胀且直径低的图形。我们得出了模型生成的图形的集团,色彩和统治数。
We introduce the Iterated Global model as a deterministic graph process that simulates several properties of complex networks. In this model, for every set $S$ of nodes of a prescribed cardinality, we add a new node that is adjacent to every node in $S$. We focus on the case where the size of $S$ is approximately half the number of nodes at each time-step, and we refer to this as the half-model. The half-model provably generate graphs that densify over time, have bad spectral expansion, and low diameter. We derive the clique, chromatic, and domination numbers of graphs generated by the model.