论文标题

复杂网络的迭代全球模型

Iterated Global Models for Complex Networks

论文作者

Bonato, Anthony, Meger, Erin

论文摘要

我们将迭代的全局模型作为确定性图形过程介绍,该过程模拟复杂网络的几个属性。在此模型中,对于规定的基数的每组节点的每组节点,我们添加了一个与$ S $中每个节点相邻的新节点。我们专注于$ S $的大小约为每个时间步中的节点数量的一半,我们将其称为半模型。半模型可证明会生成随着时间的变化,光谱膨胀且直径低的图形。我们得出了模型生成的图形的集团,色彩和统治数。

We introduce the Iterated Global model as a deterministic graph process that simulates several properties of complex networks. In this model, for every set $S$ of nodes of a prescribed cardinality, we add a new node that is adjacent to every node in $S$. We focus on the case where the size of $S$ is approximately half the number of nodes at each time-step, and we refer to this as the half-model. The half-model provably generate graphs that densify over time, have bad spectral expansion, and low diameter. We derive the clique, chromatic, and domination numbers of graphs generated by the model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源