论文标题
在混合场模型中,新兴的保护法和非热状态
Emergent conservation laws and nonthermal states in the mixed-field Ising model
论文作者
论文摘要
本文提出了一种使用绝热延续概念来计算可整合性破裂模型的近似保护定律的方法和特征。鉴于一些哈密顿量,可以通过使用一个简单的汉密尔顿在参数空间中的简单汉密尔顿的算子来计算特征态和保守的操作员,并穿着一些统一的旋转。但是,大多数绝热延续分析仅隐含地使用这种统一。在这项工作中,使用近似绝热量规势用于使用变分方法构建状态敷料,以通过旋转的截短光谱近似来计算本征态。这些方法允许在可集成性可能非扰动的模型中构建低能和高能量近似非热特征以及准本地固定的运算符。这些概念将在混合场模型中证明。
This paper presents a method of computing approximate conservation laws and eigenstates of integrability-broken models using the concept of adiabatic continuation. Given some Hamiltonian, eigenstates and conserved operators may be computed by using those of a simple Hamiltonian close by in parameter space, dressed by some unitary rotation. However, most adiabatic continuation analyses only use this unitary implicitly. In this work, approximate adiabatic gauge potentials are used to construct a state dressing using variational methods, to compute eigenstates via a rotated truncated spectrum approximation. These methods allow construction of both low and high-energy approximate nonthermal eigenstates, as well as quasi-local almost-conserved operators, in models where integrability may be non-perturbatively broken. These concepts will be demonstrated in the mixed-field Ising model.