论文标题
几乎不是周期性加$ l^1- $平均零的Ergodic函数
Ergodic Functions That are not Almost Periodic Plus $L^1-$Mean Zero
论文作者
论文摘要
Ergodic函数是统一连续$(\ text {buc})$函数的界限,这是连续静止ergodic过程的典型实现。一个自然的问题是,此类功能是否始终是$ l^1- $平均零$ \ text {buc} $函数的几乎周期性的总和。本文回答了这个问题,提出了一个框架,该框架可以提供无限的许多千古函数,这些功能几乎不是周期性加上$ l^1- $平均零。
Ergodic Functions are bounded uniformly continuous $(\text{BUC})$ functions that are typical realizations of continuous stationary ergodic process. A natural question is whether such functions are always the sum of an almost periodic with an $L^1-$mean zero $\text{BUC}$ function. The paper answers this question presenting a framework that can provide infinitely many ergodic functions that are not almost periodic plus $L^1-$ mean zero.