论文标题
$ \ mathbb p^4 $的开发立方体和$ {\ rm gor}(1,5,5,1)$中的lefschetz locus in
Developable cubics in $\mathbb P^4$ and the Lefschetz locus in ${\rm GOR}(1,5,5,1)$
论文作者
论文摘要
我们在$ \ Mathbb p^4 $中提供了可开发的立方体突出表面的分类。使用$ \ Mathbb p^4 $上的$ 3 $的对应关系,由Macaulay-Matlis duality给出,$ \ mathbb p^4 $和Artinian Gorenstein $ \ Mathbb K $ -Algebras,我们将其描述为$ {\ rm gor}(1,5,5,1)$ comports $ {\ rm gor}(1,5,5,1)$对应于那些强大的属性。
We provide a classification of developable cubic hypersurfaces in $\mathbb P^4$. Using the correspondence between forms of degree $3$ on $\mathbb P^4$ and Artinian Gorenstein $\mathbb K$-algebras, given by Macaulay-Matlis duality, we describe the locus in ${\rm GOR}(1,5,5,1)$ corresponding to those algebras which satisfy the Strong Lefschetz property.