论文标题

在计算机视觉中完成内态性

Complete Endomorphisms in Computer Vision

论文作者

Finat, Javier, Delgado-del-Hoyo, Francisco

论文摘要

k个点之间的对应关系是多视图几何和运动分析中的关键。定期转换是由两个投影平面之间的同谱构成的,这些射击平面是图像的结构模型。这种转变不能包括退化情况。基本或基本矩阵通过使用退化双线图扩展具有结构信息的同谱。三维矢量空间的内态的项目化包括所有这些。因此,他们能够解释任意意见对之间最终变性的更广泛的变换。为了包括这些堕落的情况,本文介绍了由正常变换的earivariast紧凑型给出的空间之间的双线性图。此完成对基本和基本矩阵的品种可扩展,其中大多数基于常规转换的方法失败了。完整的内态构建使用对源和目标空间的同时作用来管理退化投影图。因此,这种数学结构提供了一个强大的框架,以在多视图几何形状中关联相应的视图。

Correspondences between k-tuples of points are key in multiple view geometry and motion analysis. Regular transformations are posed by homographies between two projective planes that serves as structural models for images. Such transformations can not include degenerate situations. Fundamental or essential matrices expand homographies with structural information by using degenerate bilinear maps. The projectivization of the endomorphisms of a three-dimensional vector space includes all of them. Hence, they are able to explain a wider range of eventually degenerate transformations between arbitrary pairs of views. To include these degenerate situations, this paper introduces a completion of bilinear maps between spaces given by an equivariant compactification of regular transformations. This completion is extensible to the varieties of fundamental and essential matrices, where most methods based on regular transformations fail. The construction of complete endomorphisms manages degenerate projection maps using a simultaneous action on source and target spaces. In such way, this mathematical construction provides a robust framework to relate corresponding views in multiple view geometry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源