论文标题
关于图形度偏差度量的猜想
On a Conjecture about Degree Deviation Measure of Graphs
论文作者
论文摘要
令G为带有M边缘的N-Vertex图。 g的度偏差度量定义为s(g)= sum v(g)| degg(v) - (2m/n)|,其中n和m分别是g的顶点和边缘的数量。本文的目的是证明[J a de Oliveira,c s oliveira,c Justel和N M Maia de Abreu的猜想4.2,图形不规则性的测量,Pesq。操作。 33(3)(2013)383-398]。还计算了在某些条件下在循环数字上的化学图的程度偏差度量。
Let G be an n-vertex graph with m edges. The degree deviation measure of G is defined as s(G)=sum v in V(G)|degG(v)-(2m/n)|, where n and m are the number of vertices and edges of G, respectively. The aim of this paper is to prove the Conjecture 4.2 of [J A de Oliveira, C S Oliveira, C Justel and N M Maia de Abreu, Measures of irregularity of graphs, Pesq. Oper. 33 (3) (2013) 383-398]. The degree deviation measure of chemical graphs under some conditions on the cyclomatic number is also computed.