论文标题

神经贝叶斯:一种无监督表示学习的通用参数化方法

Neural Bayes: A Generic Parameterization Method for Unsupervised Representation Learning

论文作者

Arpit, Devansh, Wang, Huan, Xiong, Caiming, Socher, Richard, Bengio, Yoshua

论文摘要

我们介绍了一种称为神经贝叶的参数化方法,该方法允许计算一般难以计算的统计数量,并为制定新目标的途径打开了无监督的表示学习的途径。具体而言,给定观察到的随机变量$ \ mathbf {x} $和一个潜在的离散变量$ z $,我们可以表达$ p(\ mathbf {x} | z)$,$ p(z | \ mathbf {x})$和$ p(z)$和$ p(z)$,在不充分表达范围的情况下,不使用足够表达的函数(eg neural网络)来使用这些分布(EG neural neural Neturn)。为了证明其有用性,我们为此参数化开发了两个独立的用例: 1。相互信息最大化(MIM):MIM已成为自我监督表示学习的流行手段。神经贝叶斯使我们能够在观察到的随机变量$ \ mathbf {x} $和封闭形式的潜在离散随机变量$ z $之间计算共同信息。我们将其用于学习图像表示,并显示其对下游分类任务的有用性。 2。歧视标签:神经贝叶斯使我们能够制定一个目标,该目标可以最佳地标记从连续分布支持中存在的分离歧管中的样品。这可以看作是聚类的特定形式,其中支撑中的每个分离歧管都是一个单独的群集。我们设计了遵守此公式的聚类任务,并从经验上表明该模型在最佳标签上标记了分离歧管。我们的代码可在\ url {https://github.com/salesforce/neuralbayes}中找到

We introduce a parameterization method called Neural Bayes which allows computing statistical quantities that are in general difficult to compute and opens avenues for formulating new objectives for unsupervised representation learning. Specifically, given an observed random variable $\mathbf{x}$ and a latent discrete variable $z$, we can express $p(\mathbf{x}|z)$, $p(z|\mathbf{x})$ and $p(z)$ in closed form in terms of a sufficiently expressive function (Eg. neural network) using our parameterization without restricting the class of these distributions. To demonstrate its usefulness, we develop two independent use cases for this parameterization: 1. Mutual Information Maximization (MIM): MIM has become a popular means for self-supervised representation learning. Neural Bayes allows us to compute mutual information between observed random variables $\mathbf{x}$ and latent discrete random variables $z$ in closed form. We use this for learning image representations and show its usefulness on downstream classification tasks. 2. Disjoint Manifold Labeling: Neural Bayes allows us to formulate an objective which can optimally label samples from disjoint manifolds present in the support of a continuous distribution. This can be seen as a specific form of clustering where each disjoint manifold in the support is a separate cluster. We design clustering tasks that obey this formulation and empirically show that the model optimally labels the disjoint manifolds. Our code is available at \url{https://github.com/salesforce/NeuralBayes}

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源