论文标题
无需替代序列模型的增量采样
Incremental Sampling Without Replacement for Sequence Models
论文作者
论文摘要
采样是一种基本技术,当重复样品无益时,通常不需要无需替代的采样。在机器学习中,采样可用于从训练有素的模型中产生各种输出。我们提供了一个优雅的步骤,用于采样,而无需替换一系列随机程序,包括依次构建输出的生成神经模型。即使对于指数级的输出空间,我们的过程也是有效的。与先前的工作不同,我们的方法是渐进的,即可以一次绘制样品,从而提高灵活性。我们还提出了一个新的估计量,用于计算未替代的样品的预期。我们表明,没有替换的增量采样适用于许多域,例如程序合成和组合优化。
Sampling is a fundamental technique, and sampling without replacement is often desirable when duplicate samples are not beneficial. Within machine learning, sampling is useful for generating diverse outputs from a trained model. We present an elegant procedure for sampling without replacement from a broad class of randomized programs, including generative neural models that construct outputs sequentially. Our procedure is efficient even for exponentially-large output spaces. Unlike prior work, our approach is incremental, i.e., samples can be drawn one at a time, allowing for increased flexibility. We also present a new estimator for computing expectations from samples drawn without replacement. We show that incremental sampling without replacement is applicable to many domains, e.g., program synthesis and combinatorial optimization.