论文标题
多项式下限对亚物种最大化的自适应复杂性
A polynomial lower bound on adaptive complexity of submodular maximization
论文作者
论文摘要
在大型数据应用中,希望设计具有高度并行化的算法。在下二次优化的背景下,自适应复杂性已成为对算法“顺序性”的广泛衡量标准。自适应模型中的算法进行了回合,并且可以在每回合中向函数$ f $发出许多查询。每个回合中的查询必须是独立的,该计算仅取决于先前一轮获得的查询结果。 在这项工作中,我们检查了自适应复杂性模型中的两个基本变体:基数受限的单调最大化和无约束的非单调最大化。我们的主要结果是,用于基数受限的单调最大化的$ r $ round算法无法获得近似因素的近似因素,要比$ 1-1/e -ω(\ min \ {\ frac {\ frac {1} {r} {r} {r} {r},\ frac {\ frac {\ log^2 n} {r^3} {r^3} {r^3} $ n $ 持续的)。这是第一个结果表明,当我们接近$ 1-1/e $的最佳因素时,回合的数量必须炸毁多项式的较大。 对于不受限制的非符号酮最大化问题,我们显示一个积极的结果:对于每个实例,每个$δ> 0 $,我们要么获得$(1/2-δ)$ - $ 1 $ $ ground,或$(1/2+ω(Δ^^2)$ - $(1/2)$ - 以$ o(1/δ^2)$ founders获得$(1/2+ω(δ^2)$。特别是(与基数受限的情况相反),在某些情况下,(i)不可能获得比$ 1/2 $更好的近似因素,而不管回合的数量多少,并且(ii)$ r $ $ rounds才能达到$ 1/2-o(1/r)$。
In large-data applications, it is desirable to design algorithms with a high degree of parallelization. In the context of submodular optimization, adaptive complexity has become a widely-used measure of an algorithm's "sequentiality". Algorithms in the adaptive model proceed in rounds, and can issue polynomially many queries to a function $f$ in each round. The queries in each round must be independent, produced by a computation that depends only on query results obtained in previous rounds. In this work, we examine two fundamental variants of submodular maximization in the adaptive complexity model: cardinality-constrained monotone maximization, and unconstrained non-mono-tone maximization. Our main result is that an $r$-round algorithm for cardinality-constrained monotone maximization cannot achieve an approximation factor better than $1 - 1/e - Ω(\min \{ \frac{1}{r}, \frac{\log^2 n}{r^3} \})$, for any $r < n^c$ (where $c>0$ is some constant). This is the first result showing that the number of rounds must blow up polynomially large as we approach the optimal factor of $1-1/e$. For the unconstrained non-monotone maximization problem, we show a positive result: For every instance, and every $δ>0$, either we obtain a $(1/2-δ)$-approximation in $1$ round, or a $(1/2+Ω(δ^2))$-approximation in $O(1/δ^2)$ rounds. In particular (and in contrast to the cardinality-constrained case), there cannot be an instance where (i) it is impossible to achieve an approximation factor better than $1/2$ regardless of the number of rounds, and (ii) it takes $r$ rounds to achieve a factor of $1/2-O(1/r)$.