论文标题
一种非最少耦合的,共形的爱因斯坦 - 马克斯韦尔PP波的理论
A non-minimally coupled, conformally extended Einstein-Maxwell theory of pp-waves
论文作者
论文摘要
在Brans-Dicke-Maxwell理论中考虑了Weyl曲率与电磁场的非最小耦合。引力场方程在Riemannian时空中配制,该时期的扭转通过外部差分形式的语言的Lagrange乘数方法限制为零。在PP波段时期检查了非最小耦合与重力的显着性和后果。
A non-minimal coupling of Weyl curvatures to electromagnetic fields is considered in Brans-Dicke-Maxwell theory. The gravitational field equations are formulated in a Riemannian spacetime where the spacetime torsion is constrained to zero by the method of Lagrange multipliers in the language of exterior differential forms. The significance and ramifications of non-minimal couplings to gravity are examined in a pp-wave spacetime.