论文标题

在积极特征的超曲面的不合理性和几何性不合理性

Unirationality and geometric unirationality for hypersurfaces in positive characteristics

论文作者

Oguiso, Keiji, Schröer, Stefan

论文摘要

在Segre和Koll'ar在Cubic Hypersurface上的工作的基础上,我们在特征P \ geq 3的不完美领域构建了p的特定高度曲面,这表明几何理性方案是规则的,其理性点是Zariski是Zariski巨大的,不一定是繁琐的。同样,特征p = 2中某些立方表面的行为也是。

Building on work of Segre and Koll'ar on cubic hypersurfaces, we construct over imperfect fields of characteristic p\geq 3 particular hypersurfaces of degree p, which show that geometrically rational schemes that are regular and whose rational points are Zariski dense are not necessarily unirational. A likewise behaviour holds for certain cubic surfaces in characteristic p=2.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源