论文标题
在积极特征的超曲面的不合理性和几何性不合理性
Unirationality and geometric unirationality for hypersurfaces in positive characteristics
论文作者
论文摘要
在Segre和Koll'ar在Cubic Hypersurface上的工作的基础上,我们在特征P \ geq 3的不完美领域构建了p的特定高度曲面,这表明几何理性方案是规则的,其理性点是Zariski是Zariski巨大的,不一定是繁琐的。同样,特征p = 2中某些立方表面的行为也是。
Building on work of Segre and Koll'ar on cubic hypersurfaces, we construct over imperfect fields of characteristic p\geq 3 particular hypersurfaces of degree p, which show that geometrically rational schemes that are regular and whose rational points are Zariski dense are not necessarily unirational. A likewise behaviour holds for certain cubic surfaces in characteristic p=2.