论文标题

Neuroquery:人脑映射的全面荟萃分析

NeuroQuery: comprehensive meta-analysis of human brain mapping

论文作者

Dockès, Jérôme, Poldrack, Russell, Primet, Romain, Gözükan, Hande, Yarkoni, Tal, Suchanek, Fabian, Thirion, Bertrand, Varoquaux, Gaël

论文摘要

达到全球大脑组织的看法需要集合有关广泛不同的心理过程和机制的证据。人类神经科学概念和术语的种类构成了将大脑成像结果在整个科学文献中构成的基本挑战。现有的荟萃分析方法对与特定概念相关的一组出版物进行统计测试。因此,大规模的荟萃分析仅处理经常发生的单个术语。我们提出了一个新的范式,重点是预测而不是推论。我们的多变量模型预测了描述实验,认知过程或疾病的文本,可以预测神经系统观察的空间分布。这种方法处理任意长度和术语的文本对于标准荟萃分析来说太少了。我们捕获了13 459个神经影像出版物中7 547个神经科学术语的关系和神经相关性。由此产生的荟萃分析工具Neuroquery.org可以在大脑上已发表的发现的全面看法上以假设的产生和数据分析先验进行基础。

Reaching a global view of brain organization requires assembling evidence on widely different mental processes and mechanisms. The variety of human neuroscience concepts and terminology poses a fundamental challenge to relating brain imaging results across the scientific literature. Existing meta-analysis methods perform statistical tests on sets of publications associated with a particular concept. Thus, large-scale meta-analyses only tackle single terms that occur frequently. We propose a new paradigm, focusing on prediction rather than inference. Our multivariate model predicts the spatial distribution of neurological observations, given text describing an experiment, cognitive process, or disease. This approach handles text of arbitrary length and terms that are too rare for standard meta-analysis. We capture the relationships and neural correlates of 7 547 neuroscience terms across 13 459 neuroimaging publications. The resulting meta-analytic tool, neuroquery.org, can ground hypothesis generation and data-analysis priors on a comprehensive view of published findings on the brain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源