论文标题

学习不断学习

Learning to Continually Learn

论文作者

Beaulieu, Shawn, Frati, Lapo, Miconi, Thomas, Lehman, Joel, Stanley, Kenneth O., Clune, Jeff, Cheney, Nick

论文摘要

持续的终身学习需要一个代理或模型来学习许多顺序有序的任务,这是基于以前的知识而没有灾难性地忘记它的。在防止机器学习模型在灾难上忘记的默认趋势方面进行了许多工作,但实际上所有这些工作都涉及到该问题的手动设计解决方案。相反,我们主张元学习解决灾难性遗忘的解决方案,从而使AI学习不断学习。受大脑中神经调节过程的启发,我们提出了一种神经调节的元学习算法(ANML)。它通过顺序学习过程区分了一个激活门网函数,该函数可以在深层神经网络中依赖上下文的选择性激活。具体而言,神经调节性(NM)神经网络门(NM)的前向通行证(否则正常)神经网络称为预测学习网络(PLN)。因此,NM网络还间接控制了PLN的选择性可塑性(即向后通过)。 ANML可以在不大规模灾难性遗忘的情况下进行持续学习:它会产生最先进的持续学习表现,依次学习多达600堂课(超过9,000个SGD更新)。

Continual lifelong learning requires an agent or model to learn many sequentially ordered tasks, building on previous knowledge without catastrophically forgetting it. Much work has gone towards preventing the default tendency of machine learning models to catastrophically forget, yet virtually all such work involves manually-designed solutions to the problem. We instead advocate meta-learning a solution to catastrophic forgetting, allowing AI to learn to continually learn. Inspired by neuromodulatory processes in the brain, we propose A Neuromodulated Meta-Learning Algorithm (ANML). It differentiates through a sequential learning process to meta-learn an activation-gating function that enables context-dependent selective activation within a deep neural network. Specifically, a neuromodulatory (NM) neural network gates the forward pass of another (otherwise normal) neural network called the prediction learning network (PLN). The NM network also thus indirectly controls selective plasticity (i.e. the backward pass of) the PLN. ANML enables continual learning without catastrophic forgetting at scale: it produces state-of-the-art continual learning performance, sequentially learning as many as 600 classes (over 9,000 SGD updates).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源