论文标题

Co $ _2 $接近$λ$ = 2.06 $μ$ m:轨道碳观测室2(OCO-2)“强带”的准确过渡强度

Cavity ring-down spectroscopy of CO$_2$ near $λ$ = 2.06 $μ$m: Accurate transition intensities for the Orbiting Carbon Observatory-2 (OCO-2) "strong band"

论文作者

Fleurbaey, Hélène, Yi, Hongming, Adkins, Erin M., Fleisher, Adam J., Hodges, Joseph T.

论文摘要

$λ$ = 2.06 $ $ m $ m的CO $ _2 $吸收带广泛用于大气二氧化碳的遥感,这使其与许多重要的碳通量的自上而下测量相关。这些测量中使用的检索算法中使用的正向模型需要越来越精确的线强度和线形数据,可以从中计算出吸收横截面。为了克服现有行列表的准确性限制,我们使用了频率稳定的腔度环形光谱,以测量$^{12} $ C $^{16} $ o $ $ _2 $吸收频段中的39个过渡。线强度以估计的相对组合不确定性为$ u_r $ = 0.08%测量。我们使用两个理论模量预测测量强度的$ j $依赖性:具有Herman-Wallis旋转振动校正的一维光谱模型,以及一个逐行的偶极偶极运动矩表面模型[Zak等。 JQSRT 2016; 177:31-42]。对于第二种方法,我们仅拟合一个因素即可重新汇总理论综合带强度,以与测得的强度一致。我们发现,后一种方法得出了拟合$ j $依赖性强度数据的同样足够的表示,并提供了结果的最通用表示。我们对集成带强度的推荐价值等于7.183 $ \ times $ 10 $^{ - 21} $ cm分子$^{ - 1} $ $ \ pm $ 6 $ 6 $ \ times $ 10 $^{ - 24} $ cm molecule $^{ - 1} $基于Rescaled abio ab initio nibio nibio mode and scorder $ 0. 000 $ 0. 000 $ 0. 006 $ 1 006 $ 006。文献强度值与我们的结果的比较表明,系统偏差从$ -1.16%到+0.33%。

The $λ$ = 2.06 $μ$m absorption band of CO$_2$ is widely used for the remote sensing of atmospheric carbon dioxide, making it relevant to many important top-down measurements of carbon flux. The forward models used in the retrieval algorithms employed in these measurements require increasingly accurate line intensity and line shape data from which absorption cross-sections can be computed. To overcome accuracy limitations of existing line lists, we used frequency-stabilized cavity ring-down spectroscopy to measure 39 transitions in the $^{12}$C$^{16}$O$_2$ absorption band. The line intensities were measured with an estimated relative combined standard uncertainty of $u_r$ = 0.08 %. We predict the $J$-dependence of the measured intensities using two theoretical modesl: a one-dimensional spectroscopic model with Herman-Wallis rotation-vibration corrections, and a line-by-line ab initio dipole moment surface model [Zak et al. JQSRT 2016;177:31-42]. For the second approach, we fit only a single factor to rescale the theoretical integrated band intensity to be consistent with the measured intensities. We find that the latter approach yields an equally adequate representation of the fitted $J$-dependent intensity data and provides the most physically general representation of the results. Our recommended value for the integrated band intensity equal to 7.183$\times$10$^{-21}$ cm molecule$^{-1}$ $\pm$ 6$\times$10$^{-24}$ cm molecule$^{-1}$ is based on the rescaled ab initio model and corresponds to a fitted scale factor of 1.0069 $\pm$ 0.0002. Comparisons of literature intensity values to our results reveal systematic deviations ranging from $-$1.16 % to +0.33 %.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源