论文标题

相对大多项式环

Relative big polynomial rings

论文作者

Snowden, Andrew

论文摘要

令$ k $为带有复杂系数的Laurent系列的领域,令$ \ Mathcal {r} $是标准级别的多项式环$ k [x_1,\ ldots,x_n] $的反限制,而让$ \ \ \ \ m nrycal {r}^ryments $ nounding nounding unding unding unding unding y Mathist $分母。在与Erman和Sam的以前的联合合作中,我们表明$ \ Mathcal {r} $和$ \ Mathcal {r}^{\ flat} $(以及许多类似定义的环)是抽象的多项式环,并将其用来提供Stillman猜想的新证明。在本文中,我们证明了补充结果,即$ \ Mathcal {r} $是$ \ Mathcal {r}^{\ flat} $的多项式代数。

Let $K$ be the field of Laurent series with complex coefficients, let $\mathcal{R}$ be the inverse limit of the standard-graded polynomial rings $K[x_1, \ldots, x_n]$, and let $\mathcal{R}^{\flat}$ be the subring of $\mathcal{R}$ consisting of elements with bounded denominators. In previous joint work with Erman and Sam, we showed that $\mathcal{R}$ and $\mathcal{R}^{\flat}$ (and many similarly defined rings) are abstractly polynomial rings, and used this to give new proofs of Stillman's conjecture. In this paper, we prove the complementary result that $\mathcal{R}$ is a polynomial algebra over $\mathcal{R}^{\flat}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源