论文标题
带有空间相互作用的Poisson-Nernst-Nernst-Planck-Cahn-Hilliard方程的积极和能量稳定的数值方案
A Positive and Energy Stable Numerical Scheme for the Poisson-Nernst-Planck-Cahn-Hilliard Equations with Steric Interactions
论文作者
论文摘要
我们考虑了具有空间相互作用的泊松 - 尼尔斯特 - 尼尔斯克 - 卡尼 - 希利亚德(PNPCH)方程的数值方法。我们提出了一种新型能量稳定的数值方案,该方案尊重在离散水平上的质量保护和积极性。通过证明该解决方案是在封闭的凸面域上的凸功能的独特最小化,可以确定对拟议的非线性方案的解决方案的存在和独特性。熵项的奇异性在理论上进一步证明了数值溶液的积极性,这防止了最小化器接近零浓度。进一步的数值分析证明了离散的自由化耗散。进行了广泛的数值测试,以验证数值方案是否在空间上是一阶准确的,并且能够在离散水平上保留所需的属性,例如质量保护,积极性和自由能消散。此外,PNPCH方程和提出的方案用于研究高度浓缩电解质中的电荷动力学和自组装的纳米模式,这些电解质广泛用于电化学能源设备。数值结果表明,PNPCH方程和我们的数值方案能够捕获纳米结构,例如电动双层和大块中的层状图案和迷宫模式,以及具有多个时间尺度的多个时间放松。此外,我们以数值来表征短距离的跨部位相互作用与浓度梯度正则化之间的相互作用,以及它们对平衡态纳米结构发展的影响。
We consider numerical methods for the Poisson-Nernst-Planck-Cahn-Hilliard (PNPCH) equations with steric interactions. We propose a novel energy stable numerical scheme that respects mass conservation and positivity at the discrete level. Existence and uniqueness of the solution to the proposed nonlinear scheme are established by showing that the solution is a unique minimizer of a convex functional over a closed, convex domain. The positivity of numerical solutions is further theoretically justified by the singularity of the entropy terms, which prevents the minimizer from approaching zero concentrations. A further numerical analysis proves discrete free-energy dissipation. Extensive numerical tests are performed to validate that the numerical scheme is first-order accurate in time and second-order accurate in space, and is capable of preserving the desired properties, such as mass conservation, positivity, and free energy dissipation, at the discrete level. Moreover, the PNPCH equations and the proposed scheme are applied to study charge dynamics and self-assembled nanopatterns in highly concentrated electrolytes that are widely used in electrochemical energy devices. Numerical results demonstrate that the PNPCH equations and our numerical scheme are able to capture nanostructures, such as lamellar patterns and labyrinthine patterns in electric double layers and the bulk, and multiple time relaxation with multiple time scales. In addition, we numerically characterize the interplay between cross steric interactions of short range and the concentration gradient regularization, and their impact on the development of nanostructures in the equilibrium state.