论文标题

Anshow2 -Deep:通过单个图像理解进行室内场景建模

Shallow2Deep: Indoor Scene Modeling by Single Image Understanding

论文作者

Nie, Yinyu, Guo, Shihui, Chang, Jian, Han, Xiaoguang, Huang, Jiahui, Hu, Shi-Min, Zhang, Jian Jun

论文摘要

由于缺乏深度信息和杂乱的遮挡,从2D图像中进行了密集的室内场景建模。我们使用神经网络的深度功能提出了一种自动室内场景建模方法。给定单个RGB图像,我们的方法同时通过推理室内环境环境来恢复语义内容,3D几何和对象关系。特别是,我们根据卷积网络设计了浅到深度体系结构,用于语义场景的理解和建模。它涉及多层卷积网络,将室内语义/几何形状解析为非关系和关系知识。从浅端网络(例如房间布局,对象几何形状)提取的非相关知识被赋予更深层次,以解析关系语义(例如,支持关系)。提出了一个关系网络来推断对象之间的支持关系。上面的所有结构化语义和几何形状都组装在一起,以指导3D场景建模的全局优化。定性和定量分析证明了我们方法通过评估重建精度,计算性能和场景复杂性的性能来理解和建模语义增强的室内场景的可行性。

Dense indoor scene modeling from 2D images has been bottlenecked due to the absence of depth information and cluttered occlusions. We present an automatic indoor scene modeling approach using deep features from neural networks. Given a single RGB image, our method simultaneously recovers semantic contents, 3D geometry and object relationship by reasoning indoor environment context. Particularly, we design a shallow-to-deep architecture on the basis of convolutional networks for semantic scene understanding and modeling. It involves multi-level convolutional networks to parse indoor semantics/geometry into non-relational and relational knowledge. Non-relational knowledge extracted from shallow-end networks (e.g. room layout, object geometry) is fed forward into deeper levels to parse relational semantics (e.g. support relationship). A Relation Network is proposed to infer the support relationship between objects. All the structured semantics and geometry above are assembled to guide a global optimization for 3D scene modeling. Qualitative and quantitative analysis demonstrates the feasibility of our method in understanding and modeling semantics-enriched indoor scenes by evaluating the performance of reconstruction accuracy, computation performance and scene complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源