论文标题
1-D随机Landau Lifshitz Bloch方程的渐近行为
Asymptotic behavior for the 1-D stochastic Landau Lifshitz Bloch equation
论文作者
论文摘要
随机Landau-Lifshitz-Bloch方程描述了铁磁材料中的相旋转,并且在模拟热辅助磁记录中具有重要作用。在本文中,我们考虑了解决方案的偏差到1-D随机Landau-lifshitz-bloch方程,也就是说,我们给出了轨迹$ \ frac {u_ \ varepsilon-u_0} { 0+$,对于$λ(\ varepsilon)= \ frac {1} {\ sqrt {\ varepsilon}} $和$ 1 $。换句话说,较大的偏差原理和中心极限定理是分别建立的。
The stochastic Landau-Lifshitz-Bloch equation describes the phase spins in a ferromagnetic material and has significant role in simulating heat-assisted magnetic recording. In this paper, we consider the deviation of the solution to the 1-D stochastic Landau-Lifshitz-Bloch equation, that is, we give the asymptotic behavior of the trajectory $\frac{u_\varepsilon-u_0}{\sqrt{\varepsilon}λ(\varepsilon)}$ as $\varepsilon\rightarrow 0+$, for $λ(\varepsilon)=\frac{1}{\sqrt{\varepsilon}}$ and $1$ respectively. In other words, the large deviation principle and the central limit theorem are established respectively.