论文标题

具有离散吸引力的竞争设施位置的确切方法

Exact Approaches for Competitive Facility Location with Discrete Attractiveness

论文作者

Lin, Yun Hui, Tian, Qingyun

论文摘要

我们研究竞争设施位置问题的一种变体,其中公司将在已经存在竞争对手设施的市场中找到新设施。我们考虑只有有限数量的吸引力水平的情况,并且该公司必须为每个开放设施选择一个级别。目的是决定设施的位置和吸引力水平,以最大程度地利用利润。我们应用基于重力的规则来对客户的行为进行建模,并制定多比率线性分数0-1程序。我们的主要贡献是解决问题的精确解决方案方法。这些方法可以轻松实现,而无需设计复杂的算法,并且对没有稳固数学背景的用户“友好”。我们对随机生成的数据集进行计算实验,以评估其计算性能。结果表明,在计算时间方面,混合二次二次圆锥方法的表现优于其他方法。除此之外,它也是最直接的人,只要求用户熟悉圆锥二次不平等的一般形式。因此,我们建议它是解决此类问题的主要选择。

We study a variant of the competitive facility location problem, in which a company is to locate new facilities in a market where competitor's facilities already exist. We consider the scenario where only a limited number of possible attractiveness levels is available, and the company has to select exactly one level for each open facility. The goal is to decide the facilities' locations and attractiveness levels that maximize the profit. We apply the gravity-based rule to model the behavior of the customers and formulate a multi-ratio linear fractional 0-1 program. Our main contributions are the exact solution approaches for the problem. These approaches allow for easy implementations without the need for designing complicated algorithms and are "friendly" to the users without a solid mathematical background. We conduct computational experiments on the randomly generated datasets to assess their computational performance. The results suggest that the mixed-integer quadratic conic approach outperforms the others in terms of computational time. Besides that, it is also the most straightforward one that only requires the users to be familiar with the general form of a conic quadratic inequality. Therefore, we recommend it as the primary choice for such a problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源