论文标题
带有$ f(p+q-n_0)= f(p)+f(q)-f(n_0)$的乘法功能
Multiplicative functions with $f(p+q-n_0) = f(p)+f(q)-f(n_0)$
论文作者
论文摘要
令$ n_0 $为1或3。如果乘法函数$ f $满足$ f(p+q-n_0)= f(p)+f(q)-f(q)-f(n_0)$ for All Primes $ p $和$ q $,则$ f $ is $ f $ is endentity函数函数$ f(n)= n $ = n $或常数函数$ f(n)= 1 $。
Let $n_0$ be 1 or 3. If a multiplicative function $f$ satisfies $f(p+q-n_0) = f(p)+f(q)-f(n_0)$ for all primes $p$ and $q$, then $f$ is the identity function $f(n)=n$ or a constant function $f(n)=1$.