论文标题
中央HVAC植物的随机模型预测控制
Stochastic Model Predictive Control for Central HVAC Plants
论文作者
论文摘要
我们提出了一个随机模型预测控制(MPC)框架,用于中央加热,通风和空调(HVAC)植物。该框架使用真实数据来预测和量化影响系统多个时间尺度(电气负载,加热/冷却负载和能源价格)的不确定性。我们为典型大学校园的中央HVAC工厂进行了详细的闭环模拟和系统的基准。结果表明,确定性的MPC无法正确捕获骚乱,这转化为与峰值需求指控和热存储容量违规(溢出和/或耗尽)相关的经济惩罚。我们的结果还表明,随机MPC提供了一种更系统的方法来减轻不确定性,这最终导致成本节省高达7.5%,并减轻违规存储约束。基准结果还表明,这些节省几乎接近于MPC获得的理想节省(9.6%),并提供了完美的信息。
We present a stochastic model predictive control (MPC) framework for central heating, ventilation, and air conditioning (HVAC) plants. The framework uses real data to forecast and quantify uncertainty of disturbances affecting the system over multiple timescales (electrical loads, heating/cooling loads, and energy prices). We conduct detailed closed-loop simulations and systematic benchmarks for the central HVAC plant of a typical university campus. Results demonstrate that deterministic MPC fails to properly capture disturbances and that this translates into economic penalties associated with peak demand charges and constraint violations in thermal storage capacity (overflow and/or depletion). Our results also demonstrate that stochastic MPC provides a more systematic approach to mitigate uncertainties and that this ultimately leads to cost savings of up to 7.5% and to mitigation of storage constraint violations. Benchmark results also indicate that these savings are close to ideal savings (9.6%) obtained under MPC with perfect information.