论文标题

DeepSign:深层在线签名验证

DeepSign: Deep On-Line Signature Verification

论文作者

Tolosana, Ruben, Vera-Rodriguez, Ruben, Fierrez, Julian, Ortega-Garcia, Javier

论文摘要

在过去的几年中,深度学习已成为一种令人叹为观止的技术,克服了许多不同任务的传统手工方法,甚至是人类。但是,在某些任务中,例如对手写签名的验证,公开可用的数据量很少,这使得很难测试深度学习的真正局限性。除了缺乏公共数据之外,通常考虑不同的数据库和实验协议,不容易评估新颖提议的方法的改进。 这项研究的主要贡献是:i)我们对在线签名验证的最先进的深度学习方法进行深入分析,ii)我们介绍和描述新的DeepSignDB在线手写的签名签名生物识别公共数据库,iii​​),iii)我们建议使用标准的实验协议,并将其用于对比较的标准实验标记,并将其用于公平的方法,并将其用于新颖的方法,并将其与新颖的方法相比,并遵守新颖的方法。我们最近的深度学习方法称为时间一致的复发性神经网络(TA-RNNS),用于在线手写签名验证的任务。这种方法结合了动态时间扭曲和复发性神经网络的潜力,以训练更强大的系统针对伪造。我们提出的TA-RNN系统的表现优于最新技术,在考虑熟练的伪造犯罪现场和每个用户只有一个培训签名时,即使在2.0%的EER中取得了成果。

Deep learning has become a breathtaking technology in the last years, overcoming traditional handcrafted approaches and even humans for many different tasks. However, in some tasks, such as the verification of handwritten signatures, the amount of publicly available data is scarce, what makes difficult to test the real limits of deep learning. In addition to the lack of public data, it is not easy to evaluate the improvements of novel proposed approaches as different databases and experimental protocols are usually considered. The main contributions of this study are: i) we provide an in-depth analysis of state-of-the-art deep learning approaches for on-line signature verification, ii) we present and describe the new DeepSignDB on-line handwritten signature biometric public database, iii) we propose a standard experimental protocol and benchmark to be used for the research community in order to perform a fair comparison of novel approaches with the state of the art, and iv) we adapt and evaluate our recent deep learning approach named Time-Aligned Recurrent Neural Networks (TA-RNNs) for the task of on-line handwritten signature verification. This approach combines the potential of Dynamic Time Warping and Recurrent Neural Networks to train more robust systems against forgeries. Our proposed TA-RNN system outperforms the state of the art, achieving results even below 2.0% EER when considering skilled forgery impostors and just one training signature per user.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源