论文标题
在社交媒体上建模侵略性传播
Modeling Aggression Propagation on Social Media
论文作者
论文摘要
已经在各种环境和在线社交平台上研究了网络竞争,并使用最先进的机器和深度学习算法以不同的数据为模型,以实现自动检测和阻止此行为。由于自己(在线)社交圈中的毒性和侵略性升高,用户可能会受到积极行动,甚至欺负他人的行为。实际上,这种行为可以从一个用户和社区传播到另一个用户,因此传播在网络中。有趣的是,据我们所知,没有任何工作对侵略性行为的网络动态进行建模。在本文中,我们通过使用意见动力来研究社交媒体上的侵略性传播,迈出了这一方向的第一步。我们提出了模拟攻击性如何从一个用户传播到另一个用户的方法,这取决于每个用户如何连接到其他侵略性或常规用户。通过在Twitter数据上进行大量模拟,我们研究了网络中如何传播侵略性行为。我们使用爬行和注释的地面真相数据验证了我们的模型,达到了80%的AUC,并讨论了我们工作的结果和含义。
Cyberaggression has been studied in various contexts and online social platforms, and modeled on different data using state-of-the-art machine and deep learning algorithms to enable automatic detection and blocking of this behavior. Users can be influenced to act aggressively or even bully others because of elevated toxicity and aggression in their own (online) social circle. In effect, this behavior can propagate from one user and neighborhood to another, and therefore, spread in the network. Interestingly, to our knowledge, no work has modeled the network dynamics of aggressive behavior. In this paper, we take a first step towards this direction by studying propagation of aggression on social media using opinion dynamics. We propose ways to model how aggression may propagate from one user to another, depending on how each user is connected to other aggressive or regular users. Through extensive simulations on Twitter data, we study how aggressive behavior could propagate in the network. We validate our models with crawled and annotated ground truth data, reaching up to 80% AUC, and discuss the results and implications of our work.