论文标题
Witten变形和Riemannian歧管的光谱套件
Witten deformation and the spectral package of a Riemannian manifold
论文作者
论文摘要
通过Rellich-Kato定理在封闭的Riemannian歧管上与摩尔斯的功能相关的WITTEN变形在分析上与Riemannian歧管(特征值和特征形式)的光谱包与由对(Morse函数,riemannian Mortric)与“多数杂音”相关的Morse的莫尔斯复合物与Morse复合物相关联。我们调查了这种关系并讨论一些含义,包括称为“几乎小光谱包”的光谱软件包的有限子集。
The Witten deformation associated to a Morse function on a closed Riemannian manifold, via Rellich-Kato theorem, relates analytically the spectral package of the Riemannian manifold (eigenvalues and eigenforms) to the Morse complex defined by the pair (Morse function, Riemannian metric) coupled with the "multivariable harmonic oscillators" associated to the critical points of the Morse function. We survey this relation and discuss some implications, including the finite subset of the spectral package referred to as the "virtually small spectral package" .