论文标题
使用卷积神经网络重建Baryon声学振荡
Baryon acoustic oscillations reconstruction using convolutional neural networks
论文作者
论文摘要
我们提出了一个新的方案,以基于深卷积神经网络(CNN)的基于重要的宇宙学信息来重建重制声学振荡(BAO)信号。该网络在测试集中可以准确地恢复大规模的模式:真实和重建的初始条件之间的相关系数达到$ 90 \%$,在$ k \ leq 0.2 h \ mathrm {mpc}^{-1} $上可以大大改善BAISE down至baise down-noyatio, $ k \ simeq0.4h \ mathrm {mpc}^{ - 1} $。由于该新方案基于子盒中的配置空间密度字段,因此与标准重建方法相比,它是局部且受调查边界影响的影响,如我们的测试所证实。我们发现,在一种宇宙学中训练的网络能够重建其他宇宙的峰值,即恢复到独立于宇宙学的非线性损失的信息。回收的BAO峰位置的准确性远低于训练和测试的宇宙学模型差异所致,这表明我们的方案中可以有效地区分不同的模型。非常有前途的是,我们的计划提供了一种不同的新方法来从正在进行的大型银河系调查中提取宇宙学信息。
We propose a new scheme to reconstruct the baryon acoustic oscillations (BAO) signal, which contains key cosmological information, based on deep convolutional neural networks (CNN). Trained with almost no fine-tuning, the network can recover large-scale modes accurately in the test set: the correlation coefficient between the true and reconstructed initial conditions reaches $90\%$ at $k\leq 0.2 h\mathrm{Mpc}^{-1}$, which can lead to significant improvements of the BAO signal-to-noise ratio down to $k\simeq0.4h\mathrm{Mpc}^{-1}$. Since this new scheme is based on the configuration-space density field in sub-boxes, it is local and less affected by survey boundaries than the standard reconstruction method, as our tests confirm. We find that the network trained in one cosmology is able to reconstruct BAO peaks in the others, i.e. recovering information lost to non-linearity independent of cosmology. The accuracy of recovered BAO peak positions is far less than that caused by the difference in the cosmology models for training and testing, suggesting that different models can be distinguished efficiently in our scheme. It is very promising that Our scheme provides a different new way to extract the cosmological information from the ongoing and future large galaxy surveys.