论文标题

大规模MIMO的盲目频道估计:一种深度学习的辅助方法

Blind Channel Estimation for Massive MIMO: A Deep Learning Assisted Approach

论文作者

Sabeti, Parna, Farhang, Arman, Macaluso, Irene, Marchetti, Nicola, Doyle, Linda

论文摘要

大规模多输入多输出(MIMO)或大量MIMO是未来无线网络的关键技术之一。但是,大规模MIMO系统的性能在很大程度上取决于准确的通道估计。尽管此类系统中的渠道状态信息(CSI)的获取需要随着用户数量的增长而越来越多的培训开销。为了解决这个问题,在本文中,我们提出了一种深度学习辅助盲信估计技术,用于基于正交的频施加多路复用(OFDM)大型MIMO系统。我们证明,通过利用大量MIMO通道的渐近正交性,可以将通道失真平均而无需先前了解通道脉冲响应的知识,并且在某些数学上的操纵后,可以提取不同的用户传输数据符号。因此,通过部署一种降级卷积神经网络算法(DNCNN),我们减轻剩余的通道和噪声效应,以准确检测到通道发声阶段的传输数据符号。使用检测到的数据符号作为虚拟飞行员,我们估计每个BS天线上所有用户的CSI。我们的仿真结果证明了我们提出的技术的功效,并证明它可以提供均方根误差(MSE)性能,该性能与数据辅助通道估计技术相吻合。

Large scale multiple-input multiple-output (MIMO) or Massive MIMO is one of the pivotal technologies for future wireless networks. However, the performance of massive MIMO systems heavily relies on accurate channel estimation. While the acquisition of channel state information (CSI) in such systems requires an increasingly large amount of training overhead as the number of users grows. To tackle this issue, in this paper, we propose a deep learning assisted blind channel estimation technique for orthogonal frequency division multiplexing (OFDM) based massive MIMO systems. We prove that by exploiting the asymptotic orthogonality of the massive MIMO channels, the channel distortion can be averaged out without the prior knowledge of channel impulse responses, and after some mathematical manipulation, different users transmitted data symbols can be extracted. Thus, by deploying a denoising convolutional neural network algorithm (DnCNN), we mitigate a remaining channel and noise effect to accurately detect the transmitted data symbols at the channel sounding stage. Using the detected data symbols as virtual pilots, we estimate the CSI of all the users at each BS antennas. Our simulation results testify the efficacy of our proposed technique and demonstrate that it can provide a mean square error (MSE) performance which coincides with that of the data-aided channel estimation technique.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源